Advertisement

Histochemistry

, Volume 85, Issue 3, pp 241–250 | Cite as

Histochemical localization of cholinesterases and monoamines in the central heart of Sepia officinalis L. (Cephalopoda)

  • G. Kling
Article

Summary

The central heart of the coleoid cephalopod, Sepia officinalis, was studied using acetylcholinesterase and fluorescence histochemistry. Using histo- and cytochemical reactions, acetylcholinesterase was localized in the axolemma and axoplasm of specific cardiac nerve fibres, as well as in the sarcolemma and within the sarcotubular system of the muscle cells. Butyrylcholinesterase exhibited a different distribution, being found only in the luminal trabecular muscle layer. Glyoxylic-acid-induced fluorescence indicated the presence of catecholamines (emission maximum 470 nm) in cardiac nerve axons. These histochemical findings support the hypothesis that noradrenaline and/or dopamine and acetylcholine act antagonistically as natural transmitters. Fluorophores indicating the presence of serotonin were not observed. The present results are discussed in the light of previous pharmacological findings.

Keywords

Dopamine Luminal Catecholamine Acetylcholine Monoamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrowicz JS (1960) Innervation of the hearts of Sepia off. Acta Zool B 41:65–100Google Scholar
  2. Amenta F, Cavallotti C, Ferrante F, Zomparelli M (1980) The cholinergic innervation of the aorta. Acta Histochem 66:197–203Google Scholar
  3. Andrews PLR, Tansey EM (1983a) The digestive tract of Octopus vulgaris: The anatomy, physiology and pharmacology of the upper tract. J Mar Biol Assoc UK 63:109–134Google Scholar
  4. Andrews PLR, Tansey EM (1983b) Antinergic innervation of the blood vessels of Octopus vulgaris. Cell Tissue Res 230:229–232Google Scholar
  5. D'Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris. J Neurochem 29:1053–1057Google Scholar
  6. Bacq ZM (1935) Recherches sur la physiologie et la pharmacologie du système nerveux autonome. Arch Int Physiol 42:24–42Google Scholar
  7. Bacq ZM (1941) Physiologie comparée de la transmission chimique des excitations nerveuses. Ann Soc R Belg 72:181–203Google Scholar
  8. Bacq ZM, Fischer P, Ghiretti F (1952) Action de la 5-hydroxytryptamine chez les cephalopodes. Arch Int Physiol 59:165–171Google Scholar
  9. Barber A (1982) Monoamine-containing varicosities in theneural sheath of a gastropod molluse demonstrated by glyoxylic acid histofluorescence. Cell Tissue Res 226:267–273Google Scholar
  10. Barnard EA, Chin TH, Jedrezejcyzk J, Porter CW, Wieckowski J (1973) Acetylcholine receptor and cholinesterase molecules of vertebrate skeletal muscle and their nerve junctions. In: Rang HP (ed) Drug receptors. University Park Press, Baltimore, pp 225–240Google Scholar
  11. Bone Q, Howarth JV (1980) The role of l-glutamate in the neuromuscular transmission in some molluscs. J Mar Biol Assoc UK 60:619–626Google Scholar
  12. Boyd PJ (1985) Actions of some 5-hydroxytamine analogues on the isolated heart of the snail Helix aspersa. Comp Biochem Physiol 81C:233–239Google Scholar
  13. Budelmann BU, Bonn U (1982a) Monoamine als Transmitter im efferenten Fasersystem der Statcyste von Octopus vulgaris. Verh Dtsch Zool Ges 75:216Google Scholar
  14. Budelmann BU, Bonn U (1982b) Histochemical evidence for catecholamines in the statocyst of Octopus vulgaris. Cell Tissue Res 227:475–483Google Scholar
  15. Chichery MP, Chichery R (1974) Histochemical study of the localization of cholinesterase in the central nervous system of Sepia off. Cell Tissue Res 148:551–560Google Scholar
  16. Cottrell GA (1967) Occurence of dopamine and noradrenaline in the nervous tissue of some invertebrate species. Br J Pharmacol Chemother 29:63–69Google Scholar
  17. Cottrell GA, Osborne N (1969) A neurosecretory system terminating in the Helix-heart. Comp Biochem Physiol 28:1455–1459Google Scholar
  18. Fänge R, Östlund E (1954) The effects of adrenaline, noradrenaline, tyramine and other drugs on the isolated heart of vertebrates and a cephalopod (Eledone cirrhosa) Acta Zool Stockholm 35:289–305Google Scholar
  19. Fernandez J (1966) Nervous system of the snail Helix aspersa. 1. Structure and histochemistry of ganglionic sheath and neuroglia. J Comp Neurol 127:157–182Google Scholar
  20. Florey E, Florey E (1954) Über die mögliche Bedeutung von Enteramin als nervöse Aktionssubstanz bei Cephalopoden und dekapoden Crustaceen. Z Naturforschung 9:58–68Google Scholar
  21. Florey E, Winesdorfer J (1968) Cholinergic nerve endings in Octopus brain. J Neuruochem 15:169–177Google Scholar
  22. Fourman J (1969) Cholinesterase activity in the supraorbital salt secreting gland of the duck. J Anat 104:233–239Google Scholar
  23. Garden JM, Hause SK, Hoskin FCG, Roush AH (1975) Comparison of DFP-hydrolizing enzyme purified from head ganglion and hepatopancreas of squid (Loligo pealii) by means of isoelectric focsing. Comp Biochem Physiol 52C:95–98Google Scholar
  24. Gershorn MD (1981) The identification of neurotransmitters to smooth muscle. In: Bülbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle. Edward Arnold, LondonGoogle Scholar
  25. Grigoreva GM (1969) Cholinesterase from the optical ganglion of Octopus spec and the squid, Ommastrephes sloaneipacificus. J Evol Biochem Physiol Suppl: Enzymes in animal evolution. Neuka, LeningradGoogle Scholar
  26. Grigoreva GM, Rosengart EV, Turpayev TM (1968) The specifity of cholinesterase from the heart muscle and haemolymph in molluscs. J Evol Physiol Suppl: Physiology and biochemistry of invertebrates Nauka, LeningradGoogle Scholar
  27. Grimpe G (1913) Das Blutgefäßsystem der dibranchiaten Cephalopoden. I. Octopoda. Z Wiss Zool 104:538–621Google Scholar
  28. Hirano H, Ogawa K (1967) Ultrastructural localisation of cholinesterase activity in nerve endings in the guineapig heart. J Electron Microsc 16:313–321Google Scholar
  29. Hoskin FCG (1976) Distribution of diisopropylfluoridate-hydrolyzing enzyme between sheath and axoplasm of squid giant axon. J Neurochem 26:1043–1045Google Scholar
  30. Hoskin FCG, Long RJ (1972) Purification of DFP-hydrolyzing enzyme from squid head ganglion. Arch Biochem Biophys 150:548–555Google Scholar
  31. Isgrove A (1909) Eledone. In: Herdman WA (ed) Memoirs on typical british marine plants and animals. Williams and Norgate, LondonGoogle Scholar
  32. Jensen H, Tjønneland A (1977) Ultrastructure of the heart muscle cells of the cuttlefish Rossia macrosoma. Cell Tissue Res 185:147–158Google Scholar
  33. Johansen K, Huston MJ (1962) Effects of some drugs on the circulatory system of the intact, non-anaesthetized cephalopod Octopus dofleini. Comp Biochem Physiol 5:177–184Google Scholar
  34. Juorio AV (1971) Catecholamines and 5-hydroxytryptamine in nervous tissues of cephalopods. J Physiol (London) 216:213–223Google Scholar
  35. Juorio AV, Barlow JJ (1974) Catecholamine levels in the vertical lobes of Octopus vulgaris and other cephalopodes and the effect of experimental degeneration. Comp Gen Pharmacol 5:281–284Google Scholar
  36. Juorio AV, Killick SW (1972) Monoamines and their metabolism in molluscs. Comp Gen Pharmacol 3:283–295Google Scholar
  37. Juorio AV, Killick SW (1973) The distribution of monoamines and some of their acid metabolits in the posterior salivary glands and viscera of some cephalopodes. Comp Biochem Physiol 44:1059–1068Google Scholar
  38. Kamamoto FJ (1961) The effects of eserine on sodium regulation in grayfish. Comp Biochem Physiol 3:297–303Google Scholar
  39. Karnovsky MJ (1964) The localisation of cholinesterase activity in the rat cardiac muscle by electron microscopy. J Cell Biol 23:217–232Google Scholar
  40. Karnovsky MJ, Roots L (1964) A “direct colouring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221Google Scholar
  41. Kawaguti S (1963a) Electron microscopy of the heart of the cuttlefish. Biol J Okayama Univ 9:27–40Google Scholar
  42. Kling G (1983) Innervation und Pharmakologie des Zentralherzens von Sepia officinalis. Verh Dtsch Zool Ges 76:298Google Scholar
  43. Kling G, Schipp R (1984) The peripheral innervation of the heart of Eledone moschata demonstrated by histofluorescence microscopy. Experientia 40:1266–1268Google Scholar
  44. Koblick DC, Goldman MH, Pace N (1962) Cholinesterase and active sodium transport in frog skin. Am J Physiol 203:901–902Google Scholar
  45. Koelle GB, Davis R, Smyrl EG, Fine AV (1974) Refinement of the bis- (thioacetosy) aurate (I) method for the electrone microscopic localisation of acetylcholinesterases and non specific cholinesterase. J Histochem Cytochem 22:252–259Google Scholar
  46. Korn E (1969) Cholinesterase activity in the tissues of the snail Helix aspersa. Comp Biochem Physiol 23:923–929Google Scholar
  47. Krijgsman BJ, Divaris GA (1955) Contractile and pacemaker mechanisms of the heart of molluses. Biol Rev 30:1–39Google Scholar
  48. Kruta V (1935) Sur l'action de l'acetylcholine et de l'atropine sur le coer de Sepia officinalis. CR Soc Biol (Paris) 119:608–610Google Scholar
  49. Leake L, Walker RJ (1980) Invertebrate neuropharmacology. Blackie, Glasgow-LondonGoogle Scholar
  50. Loe PR, Florey E (1966) The distribution of acetylcholine and cholinesterase in the nervous system and innervated organs of Octopus dofleini. Comp Biochem Physiol 17:509–522Google Scholar
  51. Lojda Z, Gossrau R, Schiebler TH (1979) Enzyme histochemistry. A laboratory manual. Springer, Berlin Heidelberg New YorkGoogle Scholar
  52. Marceau F (1905) Recherches sur la structure du coeur chez le mollusques. Arch Anat Microsc 7:495–588Google Scholar
  53. Martin AW (1980) Some invertebrate myogenic hearts: the hearts of worms and molluscs. In: Bourne GH (ed) Hearts and heart-like organs. Academic Press, New York, pp 1–39Google Scholar
  54. Messenger JB, Tansey EM (1979) Aminergic fluorescence in the cephalopod cerebellum. J Physiol London 287:7Google Scholar
  55. Mislin H, Kauffmann M (1948) Der aktive Gefäßpuls in der Armschirmhaut der Cephalopoden. Rev Suisse Zool 55:267–271Google Scholar
  56. Naef A (1909) Die Organogenese des Coelomsystems und der zentralen Blutgefäße von Loligo. Jena Z Naturwiss 45Google Scholar
  57. Naef A (1910) Zur vergleichenden Anatomie und Entwicklungsgeschichte des Blutgefäßsystems der Cephalopoden. Zool Anz 36:316–329Google Scholar
  58. Naef A (1912) Teuthologische Notizen. Zool Anz 40:324–336Google Scholar
  59. Richter K (1973) Struktur und Funktion der Herzen wirbelloser Tiere. Zool Jb Physiol 77:477–668Google Scholar
  60. Robertson HA, Juorio AB (1976) Octopamine and some related noncatecholic amines in invertebrate nervous systems. Int Rev Neurobiol 19:173–224Google Scholar
  61. Salanki J, Varanka I, Hiripi L (1967) Comparative study on the cholinesterase activity of different tissues of a fresh-water mussel. Ann Inst Biol Tihany Hung Acad Sci 34:99–116Google Scholar
  62. Schipp R (1977) An indirect demonstration of the substructure of the lamina basalis in the branchial heart of Sepia off. by means of cholinesterase reaction. Experientia 33:74Google Scholar
  63. Schipp R, v. Boletsky S (1975) Morphology and function of the excretory organs in dibranchiate Cephalopods. In: Excretion, Fortschr Zool 23:89–110Google Scholar
  64. Schipp R, Schäfer A (1969) Vergleichende elektronenmikroskopische Untersuchungen an den zentralen Herzorganen von Cephalopoden (Sepia off.). Die Feinstruktur des Herzens. Z Zellforsch 98:576–598Google Scholar
  65. Schipp R, Schmidt HR, Fiedler A (1986) Comparative cytochemical and pharmacological studies on the cholinergic innervation of the branchial heart of the cephalopod Sepia officinalis (L.). Experientia 42:23–30Google Scholar
  66. Silver A (1974) The biology of cholinesterase. North-Holland, AmsterdamGoogle Scholar
  67. Singh DK, Singh O, Agarwal A (1982) Comparative study of cholinesterases in two snails, Pila globosa and Lymnea acuminata. J Physiol (Paris) 78:467–472Google Scholar
  68. Smith PJS (1981) The role of venous pressure in regulation of output from the heart of the octopus Eledone cirrhosa. J Exp Biol 93:243–255Google Scholar
  69. Smith PJS, Boyle PR (1983) The cardiac innervation of Eledone cirrhosa (Lamarck) (Mollusca: Cephalopoda). Philos Trans R Soc London 300 B 300:498–511Google Scholar
  70. Tansey EM (1979) Neurotransmitters in the cephalopod brain. Comp Biochem Physiol C 64:173–182Google Scholar
  71. Tansey EM (1980) Aminergic fluorescence in the cephalopod brain. Philos Trans R Soc London B 291:127–146Google Scholar
  72. Taylor JM (1976) The cytochemical localization of cholinesterase activity in the developing chick heart. Histochemistry 47:239–246Google Scholar
  73. Tompsett DH (1939) Sepia. University Press, LiverpoolGoogle Scholar
  74. de la Torre JC, Surgeon JW (1976) Histochemical fluorescence of tissue and brain monoamines: results in 18 minutes using the SPG method. Neurosci 1:451–453Google Scholar
  75. Turpayew TM, Nisiraiova SN, Sakharov AD (1967) Evolution of the cholinergic regulation of the cardiac activity in molluscs, Zh Obshch Biol 28:618–626Google Scholar
  76. Vincent D, Jullien A (1938a) Contribution à l'étude de la cholinésterase chez les invertebrès. La cholinestérase de l'hémolymphe des mollusques. CR Soc Biol 127:628–630Google Scholar
  77. Vincent D, Jullien A (1938b) L'activité cholinestérasique des extraits myocardique chez les mollusques. CR Soc Biol 127:631–632Google Scholar
  78. Voigt KH, Kiehling C, Frösch D, Bickel U, Geis R, Martin R (1983a) Identity and function of neuropeptides in the vena cava neuropil of Octopus. In: Level J, Boer HH (eds) Molluscan endocrinology. North-Holland, AmsterdamGoogle Scholar
  79. Volkmer-Ribeiro C (1970) Enterochromaffine properties of granular cells in the heart of the snails Helix aspersa and Strophocheilus oblongus. Comp Biochem Physiol 37:481–492Google Scholar
  80. Walker RJ (1984) 5-Hydroxytryptamine in invertebrates. Comp Biochem Physiol 79C:231–235Google Scholar
  81. Walker RJ, Kerkut GA (1978) The first family. Comp Biochem Physiol C 61:261–266Google Scholar
  82. Waris T, Reechardt L (1977) Histochemically demonstrable catecholamines and cholinesterases in nerve fibres of rat dorsal skin. Histochemistry 53:203–216Google Scholar
  83. Waser PG (1976) Cholinergic mechanisms. Raven Press, New YorkGoogle Scholar
  84. Watts JA, Pierce SK (1978) Acetylcholinesterse: A useful marker of sarcolemma from bivalve myocard. J Cell Sci 34:193–208Google Scholar
  85. Wells MJ (1980) Nervous control of the heart beat in Octopus. J Exp Biol 85:111–128Google Scholar
  86. Wells MJ (1983a) Hormones and the circulation in Octopus. In: Lever J, Boer HH (eds) Molluscan endocrinology. North-Holland, Amsterdam, pp 221–228Google Scholar
  87. Wells MJ (1983b) Circulation in cephalopods. In: Wilbur KM The mollusca. Academic Press, New York London, 5:240–290Google Scholar
  88. Wells MJ, Mangold K (1980) The effects of extracts from neurosecretory cells in the anterior vena cava and pharyngo-ophtalmic vein upon the hearts of intact free moving octopusis. J Exp Biol 84:319–334Google Scholar
  89. Yound JZ (1967) The visceral nerves of Octopus. Philos Trans R Soc Lond B 253:1–22Google Scholar
  90. Zenker W (1971) Cholinesterase und Nervenfasertypen. Verh Anat Ges (Jena 66:385–387Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. Kling
    • 1
    • 2
  1. 1.Institut für Allgemeine und Spezielle Zoologie der Justus-Liebig-UniversitätGiessenFederal Republic of Germany
  2. 2.Station de Biologie MarineArcachonFrance

Personalised recommendations