Histochemistry

, Volume 44, Issue 2, pp 123–132 | Cite as

Histochemical study on the distribution of some enzyme activities in the vagal and facial lobes of the goldfish, Carassius auratus

  • A. Contestabile
Article

Summary

The histochemical localization of six enzymic activities (acetylcholinesterase, pseudocholinesterase, monoamine oxidase, lactate dehydrogenase, succinate dehydrogenase and glucose-6-phosphate dehydrogenase) has been studied in the vagal and facial lobes of the goldfish, Carassius auratus. These encephalic centers are hypertrophic in Cyprinidae, corresponding to the dominance of gustatory function. Acetylcholinesterase shows a complex laminar distribution in the vagal lobes and a peculiar cellular localization in vagal motor neurons. Monoamine oxidase activity is mainly evident in fibrous tracts coming to or leaving from the lobes. Among oxidative enzymes examined, lactate dehydrogenase and succinate dehydrogenase exhibit distribution patterns respectively similar to those observed for acetylcholinesterase and monoamine oxidase. Some features on enzymes distribution in the gustatory centers of Carassius are in agreement with the enzymatic patterns well known in higher vertebrates.

Keywords

Lactate Dehydrogenase Acetylcholinesterase Monoamine Oxidase Succinate Dehydrogenase Oxidative Enzyme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, H., Hoyer, P. E.: Studies in succinate dehydrogenase histochemistry. Histochemistry 35, 173–188 (1973)Google Scholar
  2. Andersen, H., Hoyer, P. E.: Simplified control experiments in the histochemical study of coenzyme-linked dehydrogenases. Histochemistry 38, 71–83 (1974)Google Scholar
  3. Ariens Kapper, C. U., Huber, G. C., Crosby, C.: The comparative anatomy of the nervous system of vertebrates, including man, vol. I. New York: Hafner 1960Google Scholar
  4. Baumgarten, H. G.: Biogenic monoamines in the Cyclostome and lower vertebrate brain. Progr. Histochem. Cytochem. 4, 1–90 (1972)Google Scholar
  5. Braak, H., Baumgarten, H. G.: 5-Hydroxytryptamin im Zentralnervensystem vom Goldfisch (Carassius auratus). Z. Zellforsch. 81, 416–432 (1967)Google Scholar
  6. Brodie, B. B., Bogdanski, D. F., Bonomi, L.: Formation, storage and metabolism of serotonin (5-hydroxytryptamine) and catecholamines in lower vertebrates. In: Comparative neurochemistry (D. Richter ed.), p. 367–377. London: Pergamon Press 1964Google Scholar
  7. Filogamo, G.: Recherches experimentales sur l'activité des cholinesterases specifique et non specifique dans le developpement du lobe optique du poulet. Arch. Biol. (Liège) 71, 159–196 (1960)Google Scholar
  8. Friede, R. L.: Topographic brain chemistry. New York: Academic Press 1966Google Scholar
  9. Gerebtzoff, M. A.: Recherches histochimique sur les acetylcholine et choline esterases. I. Introduction et technique. Acta anat. (Basel) 19, 366–379 (1953)Google Scholar
  10. Gerebtzoff, M. A.: Cholinesterases. London: Pergamon Press 1959Google Scholar
  11. Glenner, G. G., Burtner, H. J., Brown, G. W.: The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J. Histochem. Cytochem. 5, 591–600 (1957)Google Scholar
  12. Hanker, J. S., Kusyk, C. J., Bloom F. E., Pearse, A. G. E.: The demonstration of dehydrogenases and monoamine oxidase by the formation of osmium blacks at the sites of Hatchett's brown. Histochemie 33, 205–230 (1973)Google Scholar
  13. Herrick, C. J.: The central gustatory paths in the brain of bony fishes. J. comp. Neurol. Psychol. 15, 375–456 (1905)Google Scholar
  14. Ishii, T., Friede, R. L.: A comparative histochemical mapping of acetylcholinesterase and nicotinamide adenine dinucleotide diaphorase activities in the human brain. Int. Rev. Neurobiol. 10, 231–275 (1967)Google Scholar
  15. Karnovsky, M. J., Roots, L. A.: A “direct coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221 (1964)Google Scholar
  16. Koelle, J. B.: The histochemical localization of cholinesterases in the central nervous system of the rat. J. comp. Neurol. 100, 211–235 (1954)Google Scholar
  17. Kusunoki, T., Masai, H.: Chemoarchitectonics in the central nervous system of goldfish. Arch. hist. jap. 27, 363–371 (1966)Google Scholar
  18. Kusunoki, T., Tsuda, Y., Takashima, F.: The chemoarchitectonics of the shark brain. J. Hirnforsch. 14, 13–26 (1973)Google Scholar
  19. Leghissa, S., Contestabile, A., Poli, A.: Lo sviluppo della attività enzimatica nel tetto ottico di uccelli a prole atta (Coturnix). Atti Accad. Sci. Bologna, Ser. XII, 10, 26–32 (1973)Google Scholar
  20. Lewis, P. R., Shute, C. C. D.: Selective staining of visceral efferents in the rat brain stem by a modified Koelle technique. Nature (Lond.) 183, 1743–1744 (1959)Google Scholar
  21. Masai, H., Kusunoki, T., Ishibashi, H.: The chemoarchitectonics in the forebrain of bony fishes. Yokohama med. Bull. 17, 197–199 (1966)Google Scholar
  22. Masai, H., Sato, Y.: The brain pattern of the Cyprinus carpio and Carassius auratus hibrids. J. Hirnforsch. 7, 57–64 (1964)Google Scholar
  23. Minelli, G.: Histochemical studies on certain enzymatic activities on the encephalon of Testudo graeca and Coturnix coturnix. Riv. Biol. 63, 61–86 (1970)Google Scholar
  24. Ozawa, N.: Über den Lobus vagi und Lobus glossopharyngei der Fische. Folia psychiat. neurol. jap. 5, 1–32 (1951)Google Scholar
  25. Pearse, A. G. E.: Histochemistry. Theoretical and applied, vol. II. London: Churchill Livingstone 1972Google Scholar
  26. Shen, S. C., Greenfield, P., Boell, E. J.: The distribution of cholinesterase in the frog brain. J. comp. Neurol. 102, 717–743 (1955)Google Scholar
  27. Shimizu, N., Morikawa, N., Okada, M.: Histochemical studies of monoamine oxidase of the brain of rodents. Z. Zellforsch. 49, 389–400 (1959)Google Scholar
  28. Urano, A.: Monoamine oxidase in the hypothalamo-hypophysial region of the teleosts, Anguilla japonica and Oryzias latipes. Z. Zellforsch. 114, 83–94 (1971)Google Scholar
  29. Wachtler, K.: The distribution of acetylcholinesterase in the Cyclostome brain. I. Lampetra planeri (L.). Cell Tiss. Res. 152, 259–270 (1974)Google Scholar
  30. Wake, K.: Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z. Zellforsch. 145, 287–298 (1973)Google Scholar
  31. Wawrzyniak, M.: Chemoarchitektonische Studien am Tectum opticum von Teleostiern unter normalen und experimentellen Bedingungen. Z. Zellforsch. 58, 234–264 (1962)Google Scholar
  32. Weiss, C. M.: The determination of cholinesterase in the brain tissue of three species of fresh water fish and its inactivation in vivo. Ecology 39, 194–199 (1958)Google Scholar
  33. Welsh, G. H.: The quantitative distribution of 5-hydroxytryptamine in the nervous system, eyes and other organs of some vertebrates. In: Comparative neurochemistry (D. Richter ed.). London: Pergamon Press 355–366 1964Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • A. Contestabile
    • 1
  1. 1.Institute of Comparative AnatomyUniversity of BolognaBolognaItaly

Personalised recommendations