European Journal of Pediatrics

, Volume 127, Issue 4, pp 279–285 | Cite as

Hyperglycinuria with nephrolithiasis

  • V. Oberiter
  • Z. Puretić
  • V. Fabečić-Sabadi
Original Investigations


The case of a seven and a half-year-old girl with hyperglycinuria, oxalate nephrolithiasis, and a normal plasma amino acid pattern is presented. Hyperglycinuria amounted to 400 mg of glycine in 24 h urine and the stone was composed of calcium oxalate dihydrate. The metabolic relationship between glycine and oxalate is discussed. It is possible that the association of nephrolithiasis and hyperglycinuria was coincidental, although the case of familial hyperglycinuria with nephrolithiasis reported by De Vries and collaborators and our case suggest the possibility of a relationship between the aforesaid compounds in vivo.

Key words

Hyperglycinuria Glycine Renal tubular disorder Nephrolithiasis Oxalate stone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, H. E., Dormer, A. E., Scowen, E. F., Watts, R. W. E.: The aetiology of primary hyperoxaluria. Brit. Med. J. 1958 I, 175Google Scholar
  2. Beyreiss, K., Willnow, U., Schippan, R.: Diagnose und Verlauf der Oxalose. Histologische und biochemische Untersuchungen. Kinderärztl. Prax. 39, 487–494 (1971)Google Scholar
  3. Buri, J. F.: L'Oxalose. Helv. paed. Acta 17, supl. 11 (1962)Google Scholar
  4. Crawhall, J. C., Scowen, E. F., Watts, R. W. E.: Conversion of glycine to oxalate in primary hyperoxaluria. Lancet 1959 II, 806Google Scholar
  5. Dean, B. M., Watts, R. W. E., Westwick, W. J.: The conversion of (1–13C) glycine to (13C) oxalate in primary hyperoxaluria: evidence for the existence of more than one metabolic pathway from glycine to oxalate in man. Clin. Sci. 35, 325–335 (1968)Google Scholar
  6. De Vries, A., Kochwa, S., Lazenbik, J., Frank, M., Djaldetti, M.: Glycinuria, a hereditary disorder associated with nephrolithiasis. Amer. J. Med. 23, 408–415 (1957)Google Scholar
  7. Durrum, E., Block, R. R., Durrum, E., Zweig, G.: A manual of paper chromatography and paper electrophoresis, p. 376. New York: Academic Press 1955Google Scholar
  8. Faber, S. R., Feitler, W. W., Bleiler, R. E., Ohlson, M. A., Hodges, R. E.: The effect of an induced pyridoxine and panthotenic acid deficiency on excretions of oxalic and xanthurenic acids in the urine. Amer. J. Nutr. 12, 406 (1963)Google Scholar
  9. Gershoff, S. N.: Vitamin B6 and oxalate metabolism. Vitam. Horm. (N.Y.) 22, 581–589 (1964)Google Scholar
  10. Greene, M. L., Lietman, P. S., Rosenberg, L. E., Seegmiller, J. E.: Familial hyperglycinuria. New defect in renal tubular transport of glycine and iminoacids. Amer. J. Med. 54, 265–271 (1973)Google Scholar
  11. Hillman, R. E., Albrecht, I., Rosenberg, L. E.: Identification and analysis of multiple glycine transport systems in isolated mammalian renal tubules. J. Biol. Chem. 243, 5566–5571 (1968)Google Scholar
  12. Hockaday, T. D. R., Clayton, J. E., Frederick, E. W., Smith, L. H., Jr.: Primary hyperoxaluria. Medicine (Baltimore) 43, 315–345 (1964)Google Scholar
  13. Hodgkinson, A., Nordin, B. E. C.: Physical chemistry of calcium stone formation. Biochem. J. 122, Proceedings of the Biochemical Society 5P-6P (1971)Google Scholar
  14. Hofmann, A. F., Tacker, M. M., Fromm, H., Thomas, P. J., Smith, L. H.: Acquired hyperoxaluria and intestinal disease. Evidence that bile acid glycine is not a precursor of oxalate. Mayo Clin. Proc. 48, 35–42 (1973)Google Scholar
  15. Liao, L. L., Richardson, K. E.: The inhibition of oxalate biosynthesis in isolated perfused rat liver by DL-Phenyllactate and n-Heptanoate. Arch. Biochem. Biophys. 154, 68 (1973)Google Scholar
  16. Nakada, H. I., Weinhouse, S.: Non-enzymatic transamination with glyoxylic acid and various aminoacids. J. Biol. Chem. 204, 831 (1953)Google Scholar
  17. Scriver, C. R., Davies, E.: Endogenous renal clearance rate of free amino acids in pre-pubertetal children. Pediatrics 36, 592–598 (1965)Google Scholar
  18. Scriver, C. R., Hechtman, P.: Human genetics of membrane transport with emphasis on amino acids. Adv. Hum. Genet. 1, 211 (1970)Google Scholar
  19. Scriver, C. R.: Familial iminoglycinuria. In: The Metabolic Basis of inherited Disease 3rd Ed., J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, eds., pp. 1520–1535. New York: Mc Graw Hill 1972Google Scholar
  20. Scriver, C. R., Rosenberg, L. E.: Renal excretion and reabsorption of amino acids. In: Amino acid metabolism and its disorders. Vol. X in the Series: Major problems in Clinical Pediatrics, pp. 46–51. Philadelphia-London-Toronto: W. B. Saunders 1973Google Scholar
  21. Son, S. L., Colella, J. J. Jr., Brown, B. R., Jr.: The effect of phenobarbitone on the metabolism of methoxyflurane to oxalic acid in the rat. Brit. J. Anaesth. 44, 1224 (1972)Google Scholar
  22. Williams, H. E., Smith, L. H., Jr.: Disorders of oxalate metabolism. Amer. J. Med. 45, 715–735 (1968)Google Scholar
  23. Williams, H. E., Smith, L. H., Jr.: Primary hyperoxaluria. In: The Metabolic Basis of inherited Disease. 3rd Ed, J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, eds., pp. 196–219. New York: Mc Graw Hill 1972Google Scholar
  24. Zarembski, P. M., Hodgkinson, A.: The renal clearances of oxalic acid in normal subjects and in patients with primary hyperoxaluria. Invest. Urol. 1, 87–93 (1963)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • V. Oberiter
    • 1
  • Z. Puretić
    • 1
  • V. Fabečić-Sabadi
    • 1
  1. 1.Department of Pediatrics“Dr. Mladen Stojanović” Clinical HospitalZagrebYugoslavia

Personalised recommendations