, Volume 85, Issue 4, pp 349–352 | Cite as

A highly sensitive method for the histochemical demonstration of copper in normal rat tissues

  • P. Szerdahelyi
  • P. Kása


Earlier, widely used histochemical methods for the demonstraton of copper are capable of detecting only extremely high tissue levels of this metal (generally only in pathological states, e.g. Wilsons's disease, or in cases of copper intoxication), because of their low sensitivity. The specificity of these methods has also proved to be unsatisfactory. We present a new method based on the release of bound (unreactive) copper by trichloroacetic acid, its primary precipitation using magnesium dithizonate, and intensification of the staining (secondary precipitation) using silver nitrate. Using this method, copper is demonstrable in various tissues of normal rats (brain, stomach, liver, small intestine, spleen, pancreas, kidneys) in the form of reddish to pink staining. This method can also be applied to locate pathologically high levels of copper.


Copper Nitrate Magnesium Small Intestine Trichloroacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Butt EM, Nusbaum RE, Gilmour TC, Didio SL (1958) Trace metal patterns in disease states. II. Copper storage diseases, with consideration of juvenile cirrhosis, Wilson's disease, and hepatic copper of the newborn. Am J Clin Pathol 30:479–497Google Scholar
  2. Cartwright GE, Hodges RE, Gubler CJ, Mahoney JP, Daum K, Wintrobe MM, Bean WB (1954) Studies on copper metabolism. XIII. Hepatolenticular degeneration. J Clin Invest 33:1487–1501Google Scholar
  3. Danscher G (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry 71:1–16Google Scholar
  4. Green CL (1955) Histochemical demonstration of copper in a case of hepatolenticular degeneration. Am J Pathol 31:545–553Google Scholar
  5. Howell JS (1959) Histochemical demonstration of copper in copper-fed rats and in hepatolenticular degeneration. J Pathol Bacteriol 77:473–484Google Scholar
  6. Iyengar GV, Kollmer WE, Bowen HJM (1978) The elemental composition of human tissues and body fluids. A compilation of values for adults. Verlag Chemie, WeinheimGoogle Scholar
  7. Kaltenbach T, Eger W (1966) Beitrage zum histochemischen Nachweis von Eisen, Kupfer und Zink in der menschlichen Leber unter besonderer Berücksichtigung des Silbersulfid-Verfahrens nach Timm. Acta Histochem 25:329–354Google Scholar
  8. Kozma M, Szerdahelyi P, Kása P (1981) Histochemical detection of zinc and copper in various neurons of the central nervous system. Acta Histochem 69:12–16Google Scholar
  9. Mahler HR, Baum HM, Huebscher G (1956) Enzymatic oxidation of urate. Science 124:705–708Google Scholar
  10. Mallory FB, Parker F, Jr (1939) Fixing and staining methods for lead and copper in tissues. Am J Pathol 15:517–522Google Scholar
  11. Maynard DN (1979) Nitritional disorders of vegetable crops: a review. J Plant Nutr 1:1–24Google Scholar
  12. McNary WF, Jr (1963) The intrahepatic and intracellular distribution of copper following chronic administration of the metal in the diet. Anat Rec 146:193–199Google Scholar
  13. Mendel LB, Bradley HC (1905) Experimental studies on the physiology of molluscs. Am J Physiol 14:313–327Google Scholar
  14. Menkes JH, Alker M, Steigleder GK, Weakley DR, Sung JH (1962) A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics 29:764–779Google Scholar
  15. Mondovi B, rotilio G, Costa Mt, Finazzi-Agro A, Chiancone E, Hansen RE, Beinert H (1967) Diamine oxidase from pig kidney. Improved purification and properties. J Biol Chem 242:1160–1167Google Scholar
  16. O'Dell BL (1976) Biochemistry and physiology of copper in vertebrates. In: Prasad AS, Oberleas D (eds) Trace elements in human health and disease, vol 1. Zinc and copper. Academic Press, New York, pp 391–413Google Scholar
  17. Okamoto K, Utamura M (1937–38) Biologische Untersuchungen des Kupfers. Über die histochemische Kupfernachweismethode. Acta scholae med univ imp in Kioto 20:573–580Google Scholar
  18. Okinaka S, Yoshikawa M, Toyoda M, Mozai T, Toyokura Y, Kameyama M (1954) Pathogenesis of hepatocerebral disease. II. Histochemical study of copper of liver and brain in Wilson's disease. Arch Neurol Psychiatr (Chicago) 72:573–578Google Scholar
  19. Pearse AGE (1972) Histochemistry. Theoretical and applied, vol 2. 3rd edn. Churchill Livingstone, Edinburgh, pp 1128–1170Google Scholar
  20. Prohaska JR, Wells WW (1974) Copper deficiency in the developing rat brain: a possible model for Menkes' steely hair disease. J Neurochem 23:91–98Google Scholar
  21. Prohaska JR, Wells WW (1975) Copper deficiency in the developing rat brain: evidence for abnormal mitochondria. J Neurochem 25:221–228Google Scholar
  22. Scheinberg IH, Sternlieb I (1975) Wilson's disease. In: Gaull GE (ed) Biology of brain dysfunction, vol 3. Plenum Press, New York, pp 247–264Google Scholar
  23. Schell H, Hornstein OP (1974) Über den histochemischen Nachweis von Zink im menschlichen Nebenhoden. Acta Histochem 48:232–256Google Scholar
  24. Schmidt R, Rautschke R (1963) Die Lichtempfindlichkeit der Metalldithizonate. Acta Histochem 15:359–372Google Scholar
  25. Smith H (1967) The distribution of antimony, arsenic, copper and zinc in human tissue. J Forens Sci Soc 7:97–102Google Scholar
  26. Szerdahelyi P, Kása P (1984) Histochemistry of zinc and copper. In: Bourne GH, Danielli JF (eds) International review of cytology, vol 89, Academic Press, New York, pp 1–33Google Scholar
  27. Szerdahelyi P, Kása P (1986) Histochemical demonstration of copper in normal rat brain and spinal cord: evidence of a localization in glial cells. Histochemistry 85:341–347Google Scholar
  28. Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silberverfahren. Dtsch Z ges gerichtl Med 46:706–711Google Scholar
  29. Timm F (1960) Der histochemische Nachweis der normalen Schwermetalle der Leber. Histochemie 2:150–162Google Scholar
  30. Uzman LL (1956) Histochemical localization of copper with rubeanic acid. Lab Invest 5:299–305Google Scholar
  31. Uzman LL (1957) The intrahepatic distribution of copper in relation to the pathogenesis of hepatolenticular degeneration. Arch Pathol 64:464–479Google Scholar
  32. Waterhouse DF (1945) Studies of the physiology and toxicology of blowflies. A histochemical examination of the distribution of copper in Lucilia cuprina. Council for Scietific and Industrial Research, Commonwealth of Australia. Melbourne, Bull No 191:pp 20Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Szerdahelyi
    • 1
  • P. Kása
    • 1
  1. 1.Central Research LaboratoryMedical UniversitySzegedHungary

Personalised recommendations