, Volume 70, Issue 2, pp 95–105 | Cite as

Enzyme histochemistry on bone marrow sections after embedding in methacrylate at low temperature

  • H. Westen
  • K. -F. Mück
  • L. Post


This paper presents a method for the application of light microscopy to enzyme histochemistry on semi-thin sections of non-decalcified bone marrow cylinders (4×15 mm), entire rat femurs and larger soft-tissue specimens (4×30 mm2) after embedding in a methacrylate mixture which is then polymerized at 4°C. The best results were obtained using 1–4 h fixation in 4% formaldehyde solution in 0.1 M cacodylate buffer and propanol, āā. Dehydration of the tissue in concentrated solutions of propanol was complete within 2 h. It was then impregnated for 4 h in the embedding medium containing 55% 2-hydroxyethyl methacrylate, 27% methyl methacrylate, 9% 2-hydroxyethyl acrylate, 9% propanol and 2% di-benzoyl peroxide. For the final polymerization the amount of peroxide was reduced to 0.4%, and 0.1% N,N-dimethylaniline was added as a co-initiator. Polymerization lasted about 10 h at 4°C; the heat of the reaction caused the internal temperature to rise, reaching a peak of 20°C after 6 h. The blocks could then be inserted directly into the tissue-holder of a rotation microtome and cut with a steel knife. Semi-thin sections (1–3 μm), free from wrinkles, were easily obtained: on the surface of 1% acetic acid at 35°C, even bone-containing sections spread out spontaneously. Enzyme activity was well preserved throughout the entire section when tested for acid (acPase) and alkaline phosphatase (alkPase), non-specific esterase (nEst), butyrate esterase (bEst), α-naphthol-AS-D-chloroacetate esterase (chEst), and peroxidase (poAse) on entire rat femurs and bone marrow biopsy cylinders of different species including human. Enzyme activity was still present in the blocks after a 2,5-years storage time. AlkPase outlined a network of reticulum cells, and marked osteoblasts and granulocytic cells (human). AcPase activity was strong in osteoclasts, macrophages, and Golgi zones of megakaryocytes and myeloid precursors. Best clearly marked monocytes and fat cells (rat), but not bone marrow macrophages, nEst followed the pattern of AcPase. PoAse was seen in the osteolytic rim of osteoclasts and in granulocytes. Treatment of the sections with 20% sucrose prior to incubation broke the latency of acPase and alkPase after overfixation.


Methacrylate Enzyme Histochemistry Bone Marrow Macrophage Golgi Zone Granulocytic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashford AE, Allaway WG, McCully ME (1972) Low temperature embedding in glycol methacrylate for enzyme histochemistry in plant and animal tissues. J Histochem Cytochem 20:986–990Google Scholar
  2. Beckstead JH, Bainton DF (1980) Enzyme histochemistry on bone marrow biopsies: reactions useful in the differential diagnosis of leukemia and lymphoma applied to 2-micron plastic sections. Blood 55:386–394Google Scholar
  3. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1976) Proposals for the classification of the acute leukaemias. Br J Haematol 33:451–458Google Scholar
  4. Boellaard JW, v Hirsch T (1959) Die Herstellung histologischer Schnitte von nicht entkalkten Knochen mittels Einbettung in Methacrylsäure-ester. Mikroskopie 13:386–391Google Scholar
  5. Burkhardt R (1966) Präparative Voraussetzungen zur klinischen Histologie des menschlichen Knochenmarks. I. Mitteilung: Methodische Untersuchungen zur Acrylateinbettung größerer lipidreicher Gewebsproben. Blut 13:337–357Google Scholar
  6. Burkhardt R (1971) Bone marrow and bone tissue. Color atlas of clinical histopathology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Burstone MS (1958) Histochemical demonstration of acid phosphatases with naphthol AS-phosphates. J Natl Cancer Inst 21:523–539Google Scholar
  8. Catovsky D, Galetto J, Okos A, Miliani E, Galton DAG (1974) Cytochemical profile of B and T leukaemic lymphocytes with special reference to acute lymphoblastic leukaemia. J Clin Pathol 27:767–771Google Scholar
  9. Davis BJ, Ornstein L (1959) High resolution enzyme localization with a new diazo reagent “Hexazonium Pararosanilin”. J Histochem Cytochem 7:297–298Google Scholar
  10. Deng JS, Beutner EH (1974) Effect of formaldehyde, glutaraldehyde and sucrose on the tissue antigenicity. Inter Arch Allergy Appl Immund 47:562–569Google Scholar
  11. Franklin RM, Martin MT (1981) Staining and histochemistry of undecalcified bone embedded in a water-miscible plastic. Stain Technol (in press)Google Scholar
  12. Grogg E, Pearse AGE (1952) Critical study of histochemical techniques for acid phosphatase, with description of azo-dye method. J Pathol Bacteriol 64:627–636Google Scholar
  13. Hennekuser HH (1972) Histochemischer Nachweis von Naphthol-AS-D-Chloroacetat-Esterase an Methacrylat-Schnitten. Klin Wochenschr 50:213–214Google Scholar
  14. Hopwood D (1969) Fixatives and fixation: a review. Histochem J 1:323–360Google Scholar
  15. Hoshino M, Kobayashi H (1971) The use of glycol methacrylate as an embedding medium for the histochemical demonstration of acid phosphatase activity. J Histochem Cytochem 19:575–577Google Scholar
  16. Jamshidi K, Swaim WR (1971) Bone marrow biopsy with unaltered architecture: A new biopsy device. J Lab Clin. Med 77:335–342Google Scholar
  17. Kaplow LS (1955) Histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow. Blood 10:1023–1029Google Scholar
  18. Kief H, Westen H (1980) Besonderheiten bei der Prüfung von Diuretica. In: Schnieders W, Grosdanoff P (Hrsg) Zur Problematik von chronischen Toxizitätsprüfungen. Ami-Berichte 1:131–135Google Scholar
  19. Leder L-D (1964) Über die selektive fermentzytochemischer Darstellung von neutrophilen myeloischen Zellen und Gewebsmastzellen im Paraffinschnitt. Klin Wochenschr 42:553Google Scholar
  20. Leder L-D (1978) On the terms “reticulosis” and “reticulum cell sarcoma” with regard to the modern concept of the monocyte macrophage system. Klin Wochenschr 56:1091–1096Google Scholar
  21. Leduc EH, Holt SJ (1965) Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy. J Cell Biol 26:137–155Google Scholar
  22. Li CY, Lam KW, Yam LT (1973) Esterases in human leukocytes. J Histochem Cytochem 21:1–12Google Scholar
  23. Muller LL, Jacks TJ (1975) Rapid chemical dehydration of samples for electron microscopic examinations. J Histochem Cytochem 23:107–110Google Scholar
  24. Nemetschek-Gansler H, Berg G, Schiller O (1972) Erfahrungen mit einer neuen Fixierungs- und Einbettungsmethode für Routine-Histologie. Beitr Pathol 147:201–206Google Scholar
  25. Ruddell CL (1967) Embedding media for 1–2 micron sectioning. 2. Hydroxyethyl methacrylate combined with 2-butoxyethanol. Stain Technol 42:253–255Google Scholar
  26. Schaefer HE, Fischer R (1968) Der Peroxydasenachweis an Ausstrichpräparaten sowie an Gewebsschnitten nach Entkalkung und Paraffineinbettung. Klin Wochenschr 46:1228–1229Google Scholar
  27. Schaefer HE, Käufer C, Fischer R (1970) Vergleichende fermentcytochemische Untersuchungen an Blut- und Knochenmarkszellen bei Laboratoriumstieren. Virchows Arch B 4:310–334Google Scholar
  28. Schmalzl F, Braunsteiner H (1970) The cytochemistry of monocytes and macrophages. Ser Haematol 3:93–131Google Scholar
  29. TeVelde J, Burkhardt R, Kleiverda K, Leenheers-Binnendijk L, Sommerfeld W (1977) Methylmethacrylate as an embedding medium in histopathology. Histopathology 1:319–330Google Scholar
  30. Van Furth R, Lange Vourt HL, Schaberg A (1975) Mononuclear phagocytes in human pathologyproposal for an approach to improved classification. In: Van Furth R (ed) Mononuclear phagocytes in immunity, infection, and pathology. Blackwell, Oxford, pp 1–15Google Scholar
  31. Vykoupil K-F, Thiele J, Georgii A (1976) Histochemical and immunhistochemical techniques on acrylate embedded bone biopsies. Blut 32:215–218Google Scholar
  32. Westen H (1973) Bone marrow examination in experimental animals. In: Experimental model systems in toxicology and their significance in man. Proc Eur Soc Study Drug Toxic 15:313–316Google Scholar
  33. Westen H, Bainton DF (1979) Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med 150:919–937Google Scholar
  34. Wilson AJ, Bullock GR, Williamson IHM (1980) Comparison of embedding resins for light and electron microscopy. Proc R Microsc. Soc Micro 80 Suppl 15:21Google Scholar
  35. Yam LT, Li CY, Crosby WH (1971) Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 55:283–290Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Westen
    • 1
  • K. -F. Mück
    • 1
  • L. Post
    • 1
  1. 1.Department of Experimental PathologyHoechst AGFrankfurt/M.-80Germany

Personalised recommendations