, Volume 38, Issue 3, pp 241–252 | Cite as

Action of phenobarbital on the ultrastructure and the enzymatic activity of the mouse intestine and the mouse liver

  • D. Ménard
  • A. Berteloot
  • J. S. Hugon


The fine structure and the cytochemical activity of the liver, the duodenum and the jejunum of adult mice have been studied after phenobarbital (P.B.) treatment. A smooth endoplasmic reticulum proliferation has been observed in the centrolobular hepatocytes after 3 injections of P.B. and in the apical cells of the intestinal villi after 1 to 7 injections of P.B. The distribution of glucose-6-phosphatase remained unchanged but the specific activity decreased. Biochemical measurements of alkaline phosphatase activity have shown a differential response in the duodenum and in the jejunum.


Public Health Enzymatic Activity Endoplasmic Reticulum Alkaline Phosphatase Fine Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, G. G.: Influence of bile and pancreatic secretions on the size of the intestinal villi in the rat. Amer. J. Anat. 132, 167–178 (1971)Google Scholar
  2. Becker, F. F., Lane, B. P.: Regeneration of the mammalian liver. VI. Retention of phenobarbital induced cytoplasmic alterations in dividing hepatocytes. Amer. J. Path. 52, 211–225 (1968)Google Scholar
  3. Budillon, G., Carrella, M., Coltorti, M.: Phenobarbital liver microsomal induction in MHV-3 viral hepatitis of the mouse. Experientia (Basel) 28, 1011–1012 (1972)Google Scholar
  4. Burger, P. C., Herdson, P. B.: Phenobarbital induced fine structural changes in rat liver. Amer. J. Path. 48, 793–803 (1966)Google Scholar
  5. Cardell, R. R., Badenhausen, S., Porter, K. R.: Intestinal triglycerides absorption in the rat: an electronmicroscopical study. J. Cell Biol. 34, 123–155 (1967)Google Scholar
  6. Conney, A. H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967)Google Scholar
  7. Cook, R. M., Powell, P. M., Moog, F.: Influence of biliary stasis on the activity and distribution of maltase, sucrase, alkaline, phosphatase and leucylnaphthylamidase in the small intestine of the mouse. Gastroenterology 64, 411–420 (1973)Google Scholar
  8. Dietschy, J.: Effect of bile salts on intermediate metabolism of the intestinal mucosa. Fed. Proc. 26, 1589–1598 (1967)Google Scholar
  9. Ericsson, J. L. E.: Structural aspects of drug metabolism. Chem.-Biol. Interactions 3, 258–259 (1971)Google Scholar
  10. Fouts, J. R., Devereux, T. R.: Developmental aspects of hepatic and extrahepatic drug-metabolizing enzymes systems: microsomal enzymes and components in rabbit liver and lung during the first month of life. J. Pharmacol. exp. Ther. 183, 458–468 (1972)Google Scholar
  11. Garay, E. A. R., Morisoli, L. S., Spetale, M. D. R.: Increased bilirubin conjugation in the liver and intestinal mucosa of phenobarbital treated rats. Experientia (Basel) 28, 944–946 (1972)Google Scholar
  12. Glaumann, H.: Chemical and enzymatic composition of microsomal subfraction from rat liver after treatment with phenobarbital and 3-methylcholanthrene. Chem.-Biol. Interactions 2, 369–380 (1970)Google Scholar
  13. Hartiala, K.: Metabolism of hormones, drugs and other substances by the gut. Physiol. Rev. 53, 496–534 (1973)Google Scholar
  14. Hietanen, E.: Regulation of enzyme levels in the small intestinal mucosa. Academic Dissertation, Department of Physiology, Univ. of Turku (1973)Google Scholar
  15. Higgins, J. A., Barrnett, R. J.: Studies on the biogenesis of smooth endoplasmic reticulum membranes in livers of phenobarbitaltreated rats. I. The site of activity of acyltransferases involved in synthesis of the membrane phospholipid. J. Cell Biol. 55, 282–298 (1972)Google Scholar
  16. Hugon, J. S., Maestracci, D., Ménard, D.: Glucose-6-phosphatase activity in the intestinal epithelium of the mouse. J. Histochem. Cytochem. 19, 515–525 (1971)Google Scholar
  17. Hugon, J. S., Maestracci, D., Ménard, D.: Smooth endoplasmic reticulum proliferation in mouse enterocytes induced by fructose feeding. Histochemie 29, 189–197 (1972)Google Scholar
  18. Hugon, J. S., Maestracci, D., Ménard, D.: Stimulation of glucose-6-phosphatase activity in the mucosal cells of the mouse Intestine. J. Histochem. Cytochem. 21, 426–440 (1973)Google Scholar
  19. Lavigne, J. G., Marchand, C.: Effects of phenobarbital pretreatment on rat pancreas. Amer. J. Physiol. 222, 360–364 (1972)Google Scholar
  20. Lee, N. H., Min, K. S., Hong, S. S.: The effects of phenobarbital on exocrine pancreas. Arch. int. Pharmacodyn. 185, 350–356 (1970)Google Scholar
  21. Leskes, A., Siekevitz, P., Palade, G. E.: Differentiation of endoplasmic reticulum in hepatocytes. I. Glucose-6-phosphatase distribution in situ. J. Cell Biol. 49, 264–287 (1971)Google Scholar
  22. Levi, A. J., Gatmaitan, Z., Arias, I. M.: Two hepatic cytoplasmic proteins fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein and other anions. J. clin. Invest. 48, 2156–2167 (1969)Google Scholar
  23. Litchfield, M. H., Conning, D.M.: Effect of phenobarbitone on plasma and hepatic alkaline phosphatase activity in the dog. Naunyn-Schmiedeberg Arch. Pharmacol. 272, 358–362 (1972)Google Scholar
  24. Lowry, O. H., Rosebrough, N. J., Lewiss Farr, A., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  25. McIntosh, D. A. D., Topham, J. C.: A comparison of mouse and rat liver enzymes and their response to treatment with various compounds. Biochem. Pharmacol. 21, 1025–1029 (1972)Google Scholar
  26. Ménard, D., Berteloot, A., Hugon, J. S.: Modification du réticulum endoplasmique et de la glucose-6-phosphatase intestinale après phénobarbital de sodium (P.B.). Congrès Histochimie, Tours, juillet (1973a)Google Scholar
  27. Ménard, D., Berteloot, A., Hugon, J. S.: Action of phenobarbital on the ultrastructure and the enzymatic activity of the mouse intestine. Proc. Canad. Fed. Biol. Soc. 16, 9 (1973b)Google Scholar
  28. Ménard, D., Penasse, W., Drochmans, P., Hugon, J. S.: Etude de l'activité glucose-6-phosphatasique du réticulum endoplasmique après diète au fructose, administration de barbiturate, et traitement combinè barbiturate-fructose. J. Microscopie 14, 69a (1972)Google Scholar
  29. Ménard, D., Penasse, W., Drochmans, P. Hugon, J. S.: Glucose-6-phosphatase heterogeneity within the hepatic lobule of the phenobarbital treated-rat. Histochemie (Submitted)Google Scholar
  30. Middleton, W. J. R., Isselbacher, K. J.: The stimulation of intestinal cholesterolgenesis in the rat. Proc. Soc. exp. Biol. (N.Y.) 131, 1435–1437 (1969)Google Scholar
  31. Moog, F., Grey, R. D.: Alkaline phosphatase isozymes in the duodenum of the mouse: Attainment of pattern of spatial distribution in normal and under the influence of cortisone or actinomycin D. Develop. Biol. 18, 481–500 (1968)Google Scholar
  32. Ockerman, P. A.: Glucose-6-phosphatase in human jejunal mucosa: lack of activity in Glycogenosis of Cori's type 1. Clin. chim. Acta 9, 151–156 (1964)Google Scholar
  33. Ockerman, P. A.: Glucose-6-phosphatase in human jejunal mucosa: properties demonstrating the specific character of the enzyme activity. Biochim. biophys. Acta (Amst.) 105, 22–33 (1965)Google Scholar
  34. Orrenius, S.: On the mechanism of drug hydroxylation in rat liver microsomes. J. Cell Biol. 26, 713–724 (1965a)Google Scholar
  35. Orrenius, S.: Further studies on the induction of the drughydroxylating enzyme system of liver microsomes. J. Cell Biol. 26, 725–733 (1965b)Google Scholar
  36. Orrenius, S., Ericsson, J. L. E.: On the relationship of liver glucose-6-phosphatase to the proliferation of endoplasmic reticulum in phenobarbital induction. J. Cell Biol. 31, 243–256 (1966)Google Scholar
  37. Orrenius, S., Ericsson, J. L. E., Ernster, L.: Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J. Cell Biol. 25, 627–639 (1965)Google Scholar
  38. Pandhi, P. N., Baum, H.: Effect of fasting and of phenobarbital on the distribution and latency of glucose-6-phosphatase in microsomal sub-fractions of rat liver. Life Sci. 9, 87–92 (1970)Google Scholar
  39. Reyes, H. A., Levi, J., Gatmaitan, Z., Arias, I. M.: Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins: effect of drugs, chemicals hormones and cholestases. J. clin. Invest. 50, 2242–2252 (1971)Google Scholar
  40. Rosensweig, N. S., Stifel, F. B., Herman, R. H.: Effect of phenobarbital (P.B.) on human jejunal glycolytic, gluconeogenetic and pentose phosphate pathway enzymes. Clin. Res. 17, 596 (1969)Google Scholar
  41. Rubin, E., Rybak, B. J., Lindenbaum, J., Gerson, C. D., Walker, G., Lieber, C. S.: Ultrastructural changes in the small intestine induced by ethanol. Gastroenterology 63, 801–814 (1972)Google Scholar
  42. Saito, T., Ogawa, K.: Ultracytochemical changes of the glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase) activity in liver cells of the rat treated with phenobarbital. Okajimas Folia anat. jap. 44, 11–27 (1967)Google Scholar
  43. Staubli, W., Hess, R., Weibel, E. R.: Correlated morphometric and biochemical studies on the liver. II. Effects of phenobarbital on rat hepatocytes. J. Cell Biol. 42, 92–112 (1969)Google Scholar
  44. Stetten, M. R., Ghosh, S. B.: Different properties of glucose-6-phosphatase and related enzymes in rough and smooth endoplasmic reticular membranes. Biochim. biophys. Acta (Amst.) 233, 163–175 (1971)Google Scholar
  45. Thomas, F. B., Baba, N., Greenberger, N. J., Salsburey, D.: Effect of phenobarbital on small intestinal structure and function in the rat. J. Lab. clin. Med. 80, 548–558 (1972)Google Scholar
  46. Tytgat, G., Saunders, D., Rubin, C.: Failure of phenobarbital and marijuana to stimulate the smooth endoplasmic reticulum in the human intestinal absorptive cell. Europ. J. clin. Invest. 3, 363–370 (1973)Google Scholar
  47. Van Belle, H.: Kinetics and inhibition of alkaline phosphatases from canine tissues. Biochim. biophys. Acta (Amst.) 289, 158–168 (1972)Google Scholar
  48. Wachstein, M., Meisel, E.: On the histochemical demonstration of glucose-6-phosphatase. J. Histochem. Cytochem. 4, 592 (1956)Google Scholar
  49. Wanson, J. C., May-Cocriamont, C., Penasse, W., Ménard, D.: II. Separation on Ficoll density gradients of centrolobular and perilobular hepatocytes after phenobarbital treatment. Arch. int. Biochem. 81, 396–397 (1973)Google Scholar
  50. Wattenberg, L. W., Leong, J. L.: Effects of phenothiazines on protective systems against polycyclic hydrocarbons. Cancer Res. 25, 365–370 (1965)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. Ménard
    • 1
  • A. Berteloot
    • 1
  • J. S. Hugon
    • 1
  1. 1.Department of Pathology, Medical CenterUniversity of SherbrookeSherbrookeCanada

Personalised recommendations