Advertisement

Histochemistry

, Volume 38, Issue 3, pp 229–239 | Cite as

Glucose-6-phosphatase heterogeneity within the hepatic lobule of the phenobarbital-treated rat

  • D. Ménard
  • W. Penasse
  • P. Drochmans
  • J. S. Hugon
Article

Summary

The action of phenobarbital daily injected has been studied on the rat liver. After 3 injections of 100 mg/kg, the centrolobular hepatocytes exhibit a large proliferation of the smooth endoplasmic reticulum with an important decrease of the glucose-6-phosphatase activity cytochemically detected. The perilobular hepatocytes do not show any modifications of their structure or of their enzymatic activity. These observations demonstrate that in the centrolobular zone, the glucose-6-phosphatase sites became separated from each other by the extension of the new smooth endoplasmic reticulum membranes.

Keywords

Public Health Enzymatic Activity Endoplasmic Reticulum Phenobarbital Hepatic Lobule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, D., Rigatuso, J., Lazarow, A.: Cytophotometric quantitation of glucose-6-phosphatase activity in rat liver. J. Histochem. Cytochem. 17, 107–109 (1969)Google Scholar
  2. Becker, F., Lane, B.: Regeneration of the mammalian liver. VI. Retention of phenobarbital induced cytoplasmic alterations in dividing hepatocytes. Amer. J. Path. 52, 211–225 (1968)Google Scholar
  3. Beskid, M., Majdecki, T., Marciniak, M.: The effect of ethanol on the activity of some oxidativ enzymes and on the ultrastructure of liver cells in the dog. Folia histochem. citochem 10, 155–162 (1972)Google Scholar
  4. Burger, P., Herdson, P.: Phenobarbital-induced fine structural changes in rat liver. Amer. J. Path. 48, 793–803 (1966)Google Scholar
  5. Burstone, M.: New histochemical techniques for the demonstration of tissue oxidase (cytochrome oxidase). J. Histochem. Cytochem. 7, 112–117 (1959)Google Scholar
  6. Cardell, R. Jr.: Action of metabolic hormones on the fine structure of rat liver cells. I. Effects of fasting on the ultrastructure of hepatocytes. Amer. J. Anat. 131, 21–54 (1971)Google Scholar
  7. Chedid, A., Nair, V.: Diurnal rhythm in endoplasmic reticulum of rat liver: Electron microscopic study. Science 175, 176–179 (1972)Google Scholar
  8. Chiquoine, A.: The distribution of glucose-6-phosphatase in the liver and kidney of the mouse. J. Histochem. Cytochem. 1, 429 (1952)Google Scholar
  9. Chopra, P., Roy, S., Ramalingaswami, V., Nayak, N.: Mechanism of carbon tetrachloride hepatotoxicity. An in vivo study of its molecular basis in rats and monkeys. Lab. Invest. 26, 716–727 (1972)Google Scholar
  10. Drochmans, P., Penasse, W., Ménard, D.: Adaptation of the fine structural demonstration of glucose-6-phosphatase to the study of the distribution and local deletion of the enzyme. Emcon (1972)Google Scholar
  11. Ericsson, J.: On the fine structural demonstration of glucose-6-phosphatase. J. Histochem. Cytochem. 14, 361–362 (1966)Google Scholar
  12. Ericsson, J.: Structural aspects of drug metabolism. Chem.-Biol. Interactions 3, 258–259 (1971)Google Scholar
  13. Fisk, C., Soubarow, Y.: The colorimetric determination of phosphorus. J. biol Chem 66, 375–400 (1925)Google Scholar
  14. Fouts, J., Rogers, L.: Morphological changes in the liver accompanying stimulation of microsomal drug metabolizing enzyme activity by phenobarbital, chlordane, benzpyrene or methyl-cholanthrene in rats. J. Pharmacol. exp. Ther. 147, 112–119 (1965)Google Scholar
  15. Garg, B., Khandekar, J., Tuchweber, B., Kovacs, K.: Effect of dactinomycin on phenobarbital-induced ultrastructural changes in rat hepatocytes. Path. Europ. 6, 152–160 (1971)Google Scholar
  16. Glaumann, H.: Chemical and enzymatic composition of microsomal subfractions from rat liver after treatment with phenobarbital and 3-methylcholanthrene. Chem.-Biol. Interactions 2, 369–380 (1970)Google Scholar
  17. Glenner, G.: Evaluation of the specificity of enzyme histochemical reactions. J. Histochem. Cytochem. 16, 519–529 (1968)Google Scholar
  18. Grasso, P., Wright, M., Gangolli, S.: Histochemical changes in aniline hydroxylase activity in rat liver by phenobarbitone and 2–4 xylidine. J. Path. 103, 11–12 (1971)Google Scholar
  19. Hers, H., DeDuve, C.: Le système hexose-phosphatique. II. Répartition de l'activité glucose-6-phosphatasique dans les tissues. Bull. Sté. Chim. Biol. 32, 20–29 (1953)Google Scholar
  20. Higgins, J., Barrnett, R.: Studies on the biogenesis of smooth endoplasmic reticulum membranes in livers of phenobarbital-treated rats. I. The site of activity of acyltransferases involved in synthesis of the membrane phospholipid. J. Cell Biol. 55, 282–298 (1972)Google Scholar
  21. Hugon, J., Maestracci, D., Ménard, D.: Glucose-6-phosphatase activity in the intestinal epithelium of the mouse. J. Histochem. Cytochem. 19, 515–525 (1971)Google Scholar
  22. Jones, A., Fawcett, D.: Hypertrophy of the agranular endoplasmic reticulum in hamster liver induct by phenobarbital (with a review on the functions of this organelle in liver). J. Histochem. Cytochem. 14, 215–232 (1966)Google Scholar
  23. Koudstaal, J., Hardonk, M.: Histochemical demonstration of enzymes related to NADPH-dependent hydroxylating system in rat liver after phenobarbital treatment. Histochemie 20, 68–77 (1969)Google Scholar
  24. Leskes, A., Siekevitz, P., Palade, G.: Differentiation of endoplasmic reticulum in hepatocytes. I. Glucose-6-phosphatase distribution in situ. J. Cell Biol. 49, 264–287 (1971)Google Scholar
  25. Lowry, O., Rosebrough, N., Lewiss Farr, A., Randall, R.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  26. Ménard, D., Drochmans, P., Hugon, J.: Action du phénobarbital de sodium et du fructose sur la glucose-6-phosphatase (G-6-Pase) hépatique du rat. Ann. Ass. Canad. Franç. Avanc. Sci. 39, 17 (1972)Google Scholar
  27. Ménard, D., Penasse, W., Drochmans, P., Hugon, J.: Etude de l'activité glucose-6-phosphatasique de réticulum endoplasmique après diète au fructose, administration de barbiturate et traitment combiné barbiturate-fructose. J. Microscopie 14, 69a (1972)Google Scholar
  28. Morais, R., Miron, M., Daoust, R., Lamirande, G. de: Effects du phénobarbital sur l'activité de ribonucléases acides et alcalines du foie de rat. Rev. canad. Biol. 31, 293–299 (1972)Google Scholar
  29. Morrison, G., Brock, F., Karl, I.: Quantitative analysis of regeneration and degenerating areas within the lobule of the carbon tetrachloride-injured liver. Arch. Biochem. Biophys. 111, 448–460 (1965)Google Scholar
  30. Muller, O.: Circadian rhythmicity in response to barbiturate. Pflüger Arch. Europ. J. Physiol. 330, Suppl. R-99 (1971)Google Scholar
  31. Novikoff, A.: Cell heterogenity within the hepatic lobule of the rat (Staining reactions). J. Histochem. Cytochem. 7, 240–244 (1959)Google Scholar
  32. Orrenius, S.: On the mechanism of drug hydroxylation in rat liver microsomes. J. Cell Biol. 26, 713–724 (1965a)Google Scholar
  33. Orrenius, S.: Further studies on the induction of the drughydroxylating enzyme system of liver microsomes. J. Cell Biol. 26, 725–733 (1965b)Google Scholar
  34. Orrenius, S., Ericsson, J.: On the relationships of liver glucose-6-phosphatase to the proliferation of endoplasmic reticulum in phenobarbital induction. J. Cell Biol. 31, 243–256 (1966)Google Scholar
  35. Orrenius, S., Ericsson, J., Ernster, L.: Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J. Cell Biol 25, 627–639 (1965)Google Scholar
  36. Pandhi, P., Baum, H.: Effect of fasting and of phenobarbital on the distribution and latency of glucose-6-phosphatase in microsomal subfractions of rat liver. Life Sci. 9, 87–92 (1970)Google Scholar
  37. Rappaport, A.: Subdivision of hexagonal liver lobules into a structural and functional unit. Role in hepatic physiology and pathology. Anat. Rec. 119, 11–27 (1954)Google Scholar
  38. Remmer, H., Merker, H.: Drug-induced changes in the liver endoplasmic reticulum: Association with drug-metabolizing enzymes. Science 142, 1657–1658 (1963)Google Scholar
  39. Reynolds, E., Ree, H., Moslen, M.: Liver parenchymal cell injury. IX. Phenobarbital potentiation of endoplasmic reticulum denaturation following carbon tetrachloride. Lab. Invest. 26, 290–299 (1972)Google Scholar
  40. Saito, T., Ogawa, K.: Ultracytochemical changes of the glucose-6-phosphatase (D-Glucose-6-phosphate phosphohydrolase) activity in liver cells of the rat treated with phenobarbital. Okajimas Fol. anat. jap. 44, 11–27 (1967)Google Scholar
  41. Schumacher, H.: Histochemical distribution pattern of respiratory enzymes in the liver lobule. Science 125, 501–503 (1957)Google Scholar
  42. Seligman, A., Ruttenburg, A.: The histochemical demonstration of succinic dehydrogenase. Science 113, 317–320 (1951)Google Scholar
  43. Shank, R., Morrison, G., Cheng, C., Karl, I., Schwartz, R.: Cell heterogeneity within the hepatic lobule (Quantitative histochemistry). J. Histochem. Cytochem. 7, 237–239 (1959)Google Scholar
  44. Stäubli, W., Hess, R., Weibel, E.: Correlated morphometric and biochemical studies on the liver. II. Effects of phenobarbital on rat hepatocytes. J. Cell Biol. 42, 92–112 (1969)Google Scholar
  45. Stetten, M., Ghosh, S.: Different properties of glucose-6-phosphatase and related enzymes in rough and smooth endoplasmic reticular membranes. Biochim. biophys. Acta (Amst.) 233, 163–175 (1971)Google Scholar
  46. Tice, L., Barnett, R.: The fine structural localization of glucose-6-phosphatase in rat liver. J. Histochem. Cytochem. 10, 754–762 (1962)Google Scholar
  47. Wachstein, M., Meisel, E.: On the histochemical demonstration of glucose-6-phosphatase. J. Histochem. Cytochem. 4, 592 (1956)Google Scholar
  48. Wachstein, M., Meisel, M.: Histochemistry of hepatic phosphatase at a physiologic pH; with special reference to the demonstration of bile canaliculi. Amer. J. clin. Path. 27, 13–23 (1957)Google Scholar
  49. Wanson, J., May-Cocriamont, C., Penasse, W., Ménard, D.: II. Separation on ficoll density gradients of centrolobular and perilobular hepatocytes after phenobarbital treatment. Arch. Int. Physiol. Biochem. 81, 396 (1973)Google Scholar
  50. Warchol, J.: The effect of carbon tetrachloride on histochemical reactions in the rat liver. Folia histochem. cytochem. 10, 57–84 (1971)Google Scholar
  51. Welsh, F.: Changes in distribution of enzymes within the liver lobule during adaptive increase. J. Histochem. Cytochem. 20, 107–111 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. Ménard
    • 1
    • 2
  • W. Penasse
    • 1
    • 2
  • P. Drochmans
    • 1
    • 2
  • J. S. Hugon
    • 1
    • 2
  1. 1.Department of Pathology, Medical CenterUniversity of SherbrookeSherbrookeCanada
  2. 2.Laboratoire de Cytologie et de Cancérologie Expérimentale, Faculté de Médecine, Institut BordetUniversité Libre de BruxellesBruxellesBelgique

Personalised recommendations