Advertisement

Archives of Microbiology

, Volume 147, Issue 1, pp 8–12 | Cite as

Evolution of the biochemical pathway for aromatic amino acid biosynthesis in Serpens flexibilis in relationship to its phylogenetic position

  • S. Ahmad
  • R. A. Jensen
Original Papers

Abstract

Given the availability of a reasonably complete phylogenetic tree constructed by means of modern nucleic acid sequencing techniques, it is sometimes possible to use biochemical-pathway characteristics as a basis to fine-tune the phylogenetic position of certain organisms making up the tree. A case in point in Serpens flexibilis, a helical bacterium shown by oligonucleotide cataloging to belong to the group Ia cluster of pseudomonads. The results show that within the group Ia pseudomonad cluster, S. flexibilis clusters with the Pseudomonas stutzeri/P. mendocina/P. alcaligenes/P. pseudoalcaligenes assemblage, which diverges from a lineage leading to P. aeruginosa and from yet another lineage leading to species of Azomonas and Azotobacter.

Key words

Phylogeny Biochemical evolution Aromatic biosynthesis Serpens Regulatory enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad S, Jensen RA (1986) The evolutionary history of two bifunctional proteins that emerged in the purple bacteria. Trends Biochem Sci 11:108–112Google Scholar
  2. Ahmad S, Rightmire B, Jensen RA (1986) Evolution of the regulatory isozymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase present in the Escherichia coli genealogy. J Bacteriol 165:146–154Google Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  4. Byng GS, Berry A, Jensen RA (1985) Evolutionary implications of features of aromatic amino acid biosynthesis in the genus Acinetobacter. Arch Microbiol 143:122–129Google Scholar
  5. Byng GS, Whitaker RJ, Jensen RA (1983) Evolution of l-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas. Arch Microbiol 136:163–168Google Scholar
  6. Byng GS, Berry A, Jensen RA (1986) Evolution of aromatic biosynthesis and fine-tuned phylogenetic positioning of Azomonas, Azotobacter and rRNA group I pseudomonads. Arch Microbiol 144:222–227Google Scholar
  7. Calhoun DH, Pierson DL, Jensen RA (1973) Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa. J Bacteriol 113:241–251Google Scholar
  8. Carlsson CK, Pierson LS, Rosen JJ, Ingraham JL (1983) Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153:93–99Google Scholar
  9. Dayan J, Sprinson DB (1970) Preparation of prephenic acid. In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 17 A. Academic Press, New York, pp 559–561Google Scholar
  10. Fiske MJ, Whitaker RJ, Jensen RA (1983) Hidden overflow pathway to l-phenylalanine in Pseudomonas aeruginosa. J Bacteriol 154:623–631Google Scholar
  11. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Leuhrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463Google Scholar
  12. Gibson F (1968) Preparation and purification of chorismic acid. In: Lands EM (ed) Biochemical preparations, vol 12. Wiley, New York, pp 94–97Google Scholar
  13. Hespell RB (1977) Serpens flexibilis gen. nov., sp. nov., an unusually flexible, lactate-oxidizing bacterium. Int J Syst Bacteriol 27: 371–381Google Scholar
  14. Jensen RA (1985) Biochemical pathways in prokaryotes can be traced backward through evolutionary time. Mol Biol Evol 2:92–108Google Scholar
  15. Lindroth P, Mopper K (1979) High performance liquid chromatography determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthalaldehyde. Anal Chem 51:1667–1674Google Scholar
  16. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339Google Scholar
  17. Patel N, Pierson DL, Jensen RA (1977) Dual enzymatic routes to l-tyrosine and l-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem 252:5839–5846Google Scholar
  18. Patel N, Stenmark-Cox SL, Jensen RA (1978) Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine in Pseudomonas aeruginosa. J Biol Chem 253:2972–2978Google Scholar
  19. Whitaker RJ, Gaines CG, Jensen RA (1982) A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. J Biol Chem. 257: 13550–13556Google Scholar
  20. Whitaker RJ, Berry A, Byng GS, Fiske MJ, Jensen RA (1985) Clues from Xanthomonas campestris about the evolution of aromatic biosynthesis and its regulation. J Mol Evol 21:139–149Google Scholar
  21. Woese CR, Blanz P, Hespell RB, Hahn CM (1982) Phylogenetic relationships among various helical bacteria. Curr Microbiol 7:119–124Google Scholar
  22. Woese CR, Blanz P, Hahn CM (1984) What isn't a pseudomonad: the importance of nomenclature in bacterial classification. System Appl Microbiol 5:179–185Google Scholar
  23. Zamir LO, Jensen RA, Arison BH, Douglas AW, Albers-Schonberg G, Bowen JR (1980) Structure of arogenate (pretyrosine), an amino acid intermediate of aromatic biosynthesis. J Am Chem Soc 102:4499–4504Google Scholar
  24. Zamir LO, Tiberio R, Fiske M, Berry A, Jensen RA (1985) Enzymatic and non-enzymatic dehydration reactions of l-arogenate. Biochemistry 24:1607–1612Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. Ahmad
    • 1
  • R. A. Jensen
    • 1
  1. 1.Center for Somatic-cell Genetics and BiochemistryState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations