, Volume 42, Issue 4, pp 333–344 | Cite as

Adenylate cyclase in an estradiol sensitive tissue: A cytochemical study

  • Arnold Åbro
  • Stener Kvinnsland


Estradiol was found to stimulate the activity of adenylate cyclase in the cervicovaginal epithelium of neonatal mice, demonstrated with adenylyl-imidodiphosphate and also with adenosine triphosphate (ATP) as substrate. Measures were taken to exclude interference by other ATP-degrading enzymes. The deposits of the reaction product, indicating enzyme activity, were localized on the plasma membrane of all sides of the epithelial cells. A similar distribution of enzyme activity was recorded in both controls and estradiol-stimulated animals with either of the two substrates; however, the deposits appeared most prominent after estradiol-treatment. In view of a previous report on increased activity of the cyclic AMP-degrading enzyme phosphodiesterase after estradiol-treatment, it was concluded that the parallel elevation in activity of both adenylate cyclase and cyclic AMP-phosphodiesterase indicates a role of cyclic AMP in the action mechanism of estradiol.


Public Health Plasma Membrane Enzyme Activity Epithelial Cell Adenosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åbro, A., Kvinnsland, S.: Immunocytological studies on an estradiol sensitive antigen in the cervicovaginal epithelium of neonatal mice. Z. Zellforsch. 133, 559–569 (1972)Google Scholar
  2. Barka, T., Van der Noen, H.: Adenylate cyclase activity in rat submandibular gland during postnatal development. Life Sci. 14, 267–280 (1974)Google Scholar
  3. Cohen, K. L., Bitensky, M. W.: Inhibitory effects of alloxan on mammalian adenyl cyclase. J. Pharmacol. exp. Ther. 169, 80–86 (1969)Google Scholar
  4. DePierre, J. W., Karnovsky, M. L.: Plasma membranes of mammalian cells. A review of methods for their characterization and isolation. J. Cell Biol. 56, 275–303 (1973)Google Scholar
  5. Drummond, G. I., Duncan, L.: Adenyl cyclase in cardiac tissue. J. biol. Chem. 245, 976–983 (1970)Google Scholar
  6. Dupont-Mairesse, N., Van Sande, J., Rooryck, J., Fastrez-Boute, A., Galand, P.: Mechanism of estrogen action-independence of several responses of the rat uterus from the early increase in adenosine 3′,5′-cyclic monophosphate. J. Steroid Biochemistry 5, 173–178 (1974)Google Scholar
  7. Eide, A., Höisæter, P. Å., Kvinnsland, S.: Estradiol receptor in uterine tissue from neonatal mice. Influence by cyclic AMP. J. Steroid Biochemistry (in press)Google Scholar
  8. Glick, N. B.: Inhibition of transport reactions. A. Inhibitors of ATPase: NaK-ATPase and related enzymic activities. In: Metabolic inhibitors (Hochster, R. M., Kates, M., Quastel, J. H., eds.), vol. 3, p. 1–45. London-New York: Academic Press 1972Google Scholar
  9. Greengard, P., McAfee, D. A., Kebabian, J. W.: On the mechanism of action of cyclic AMP and its role in synaptic transmission. In: Advances in cyclic nucleotide research (Greengard, P., Robinson, G. A., Paoletti, R., eds.), vol. 1, p. 337–355. New York: Raven Press 1972Google Scholar
  10. Higazi, M. G., Kvinnsland, S.: Oestradiol-17β: its influence on cyclic 3′,5′-adenosine monophosphate phosphodiesterase and 5′-nucleotidase in the cervicovaginal epithelium of neonatal mice. J. Reprod. Fertil. 36, 135–139 (1974)Google Scholar
  11. Howell, S. L., Whitfield, M.: Cytochemical localization of adenyl cyclase activity in rat islets of Langerhans. J. Histochem. Cytochem. 20, 873–879 (1972)Google Scholar
  12. Iqbal, S. J., Weakley, B. S.: The effects of different preparative procedures on the ultrastructure of the hamster ovary. I. Effects of various fixative solutions on ovarian oocytes and their granulosa cells. Histochemistry 38, 95–122 (1974)Google Scholar
  13. Kanamori, T., Hayakawa, T., Nagatsu, T.: Adenosine 3′,5′-monophosphate-dependent protein kinase and amylase secretion from rat parotid gland. Biochem. biophys. Res. Commun. 57, 394–398 (1974)Google Scholar
  14. Korenman, S. G., Sanborn, B. M., Bhalla, R. C.: Adenyl cyclase and the cyclic AMP responsive system in the uterus. In: Advances in experimental medicine and biology (O'Malley, B. W., Means, A. R., eds.), vol. 36, p. 241–261. London-New York: Plenum Press 1973Google Scholar
  15. Kvinnsland, S.: Estradiol-17β, cyclic AMP and prostaglandins: In vivo and in vitro studies on the cervicovaginal epithelium from neonatal mice. Life Sci. 12, Part I, 373–384 (1973)Google Scholar
  16. Kvinnsland, S., Åbro, A.: Cyclic AMP: its effect on an estrogen-sensitive antigen in organ cultures of the cervicovaginal epithelium from neonatal mice. Experientia (Basel) 28, 846–848 (1972)Google Scholar
  17. Maurer, H. R.: Cleavage of ATP by mouse uterine chromatin after in vivo administration of oestradiol. Z. Naturforsch. 27b, 1267–1270 (1972)Google Scholar
  18. Mietkiewski, K., Domka, F., Malendowicz, L., Malendowicz, J.: Studies on ATP hydrolysis in medium for histochemical demonstration of ATPase activity. Histochemie 24, 343–353 (1970)Google Scholar
  19. Moses, H. L., Rosenthal, A. S.: Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J. Histochem. Cytochem. 16, 530–539 (1968)Google Scholar
  20. North, R. J.: The localization by electron microscopy of nucleoside phosphatase activity in guinea pig phagocytic cells. J. Ultrastruct. Res. 16, 83–95 (1966)Google Scholar
  21. Øye, I., Sutherland, E. W.: The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim. biophys. Acta (Amst.) 127, 347–354 (1966)Google Scholar
  22. Perkins, J. P.: Adenyl cyclase. In: Advances in cyclic nucleotide research (Greengard, P., Robison, G. A., eds.), vol. 3, p. 1–64. New York: Raven Press 1973Google Scholar
  23. Reik, L., Petzold, G. L., Higgins, J. A., Greengard, P., Barrnett R. J.: Hormone-sensitive adenyl cyclase: cytochemical localization in rat liver. Science 168, 382–384 (1970)Google Scholar
  24. Reimann, E. M., Walsh, D. A., Krebs, E. G.: Purification and properties of rabbit skeletal muscle adenosine 3′,5′-monophosphate-dependent protein kinases. J. biol. Chem. 246, 1986–1995 (1971)Google Scholar
  25. Rodbell, M., Birnbaumer, L., Pohl, S. L., Krans, H. M. J.: The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J. biol. Chem. 246, 1877–1882 (1971)Google Scholar
  26. Sananes, N., Psychoyos, A.: Cytochemical localization of adenyl cyclase in the rat uterus. J. Reprod. Fertil. 38, 181–183 (1974)Google Scholar
  27. Schmidt, M. J., Palmer, E. C., Dettbarn, W. D., Robison, G. A.: Cyclic AMP and adenyl cyclase in the developing rat brain. Develop. Psychobiology 3, 53–67 (1970)Google Scholar
  28. Schulze, W., Krause, E. G., Wollenberger, A.: Cytochemical demonstration and localization of adenyl cyclase in skeletal and cardiac muscle. In: Advances in cyclic nucleotide research (Greengard, P., Robison, G. A., Paoletti, R., eds.), vol. 1, p. 249–260. New York: Raven Press 1972Google Scholar
  29. Singhal, R. L.: Cyclic adenosine 3′,5′-monophosphate and estrogenic stimulation of uterine metabolism. In: Advances in pharmacology and chemotherapy (Garattini, S., Hawking, F., Goldin, A., Kopin, I. J., eds.), vol. 11, p. 99–150. London-New York: Academic Press 1973Google Scholar
  30. Szego, C. M., Davis, J. S.: Adenosine 3′,5′-monophosphate in rat uterus: acute elevation by estrogen. Proc. nat. Acad. Sci. (Wash.) 58, 1711–1718 (1967)Google Scholar
  31. Tu, J. C., Malhotra, S. K.: Histochemical localization of adenyl cyclase in the fungus Phycomyces blakesleeanus. J. Histochem. Cytochem. 21, 1041–1046 (1973)Google Scholar
  32. Wachstein, M., Meisel, E.: Histochemistry of hepatic phosphatases at a physiological pH with special reference to the demonstration of bile canaliculi. Amer. J. clin. Path. 27, 13–23 (1957)Google Scholar
  33. Wagner, R. C., Kreiner, P., Barrnett, R. J., Bitensky, M. W.: Biochemical characterization and cytochemical localization of catecholamine-sensitive adenylate cyclase in isolated capillary endothelium. Proc. nat. Acad. Sci. (Wash.) 69, 3175–3179 (1972)Google Scholar
  34. Weiss, B., Crayton, J.: Gonadal hormones as regulators of pineal adenyl cyclase activity. Endocrinology 87, 527–533 (1970)Google Scholar
  35. Yoshida, H., Nagai, K., Kamei, M., Nakagawa, Y.: Irreversible inactivation of (Na+−K+-dependent ATPase and K+-dependent phosphatase by fluoride. Biochim. biophys. Acta (Amst.) 150, 162–164 (1968)Google Scholar
  36. Yount, R. G., Babcock, D., Ballantyne, W., Ojala, D.: Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry 10, 2484–2489 (1971)Google Scholar
  37. Zor, U., Koch, J., Lamprecht, S. A., Ausher, J., Lindner, A. R.: Mechanism of oestradiol action on the rat uterus: independence of cyclic AMP, prostaglandin E2 and β-adrenergic mediation. J. Endocr. 58, 525–533 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Arnold Åbro
    • 1
  • Stener Kvinnsland
    • 1
  1. 1.Institute of AnatomyUniversity of BergenBergenNorway

Personalised recommendations