Archives of Microbiology

, Volume 113, Issue 3, pp 215–220 | Cite as

Growth characteristics of an obligately psychrophilic Vibrio sp.

  • R. A. Herbert
  • C. R. Bell
Article

Abstract

The growth characteristics of an obligately psychrophilic Vibrio sp. have been studied in a chemostat with glucose or lactose as the limiting substrate over a temperature range 0–23°C. Vibrio AF-1 has an optimum growth temperature of 15°C and maximum growth temperature which is dependent upon the carbon source. On glucose growth ceases at 20°C whereas on lactose growth continues to 23°C. Growth rate is also a function of the carbon source provided. When grown on glucose, fructose, sucrose, maltose and galactose μmax values of 0.046 h-1 at 15°C were recorded whereas on lactose, mannose, ribose and xylose μmax values of 0.020 h-1 were obtained. Substrate affinities (K s ) for the 9 sugars also fall into 2 divisions as for μmax and are temperature dependent. Those sugars which support a high growth rate have highest K s values at 0°C whereas these which give a low growth rate show maximum affinities at 15°C. Vibrio AF-1 produces the maximum cell yield (0.6 g/g sugar consumed) at temperature <8°C irrespective of the carbon source utilised and correlated with maximum rates of sugar uptake and minimum O2 consumption. Maintenance energy determination on glucose grown cells show that at 2° C 2% of the carbon input is used for maintenance whereas at 20°C the requirement increases to 10% of the carbon input.

Key words

Obligate psychrophile Maximum specific growth rate Cell yield Oxygen uptake Substrate affinities Vibrio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, K.: Low cost continuous culture apparatus. Lab. Pract. 17, 817–821 (1968)Google Scholar
  2. Baxter, R. M., Gibbons, N. E.: Observations on the physiology of psychrophilism in a yeast. Canad. J. Microbiol. 8, 511–517 (1962)Google Scholar
  3. Brown, C. M., Rose, A. H.: Effect of temperature on the composition and cell volume of Candida utilis. J. Bact. 97, 261–272 (1969)Google Scholar
  4. Brown, C. M., Stanley, S. O.: Environment-mediated changes in the cellular content of the “pool” constituents and their associated changes in cell physiology. J. appl. Chem. Biotechn. 22, 363–389 (1972)Google Scholar
  5. Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric assay of deoxyribonucleic acid. Biochem. J. 62, 315–321 (1956)Google Scholar
  6. Dean, A. C. R.: The effect of the temperature of growth on the nucleic acid and protein content of Aerobacter aerogenes. Proc. roy. Soc. B 160, 397–401 (1964)Google Scholar
  7. De Ley, J.: Comparative carbohydrate metabolism and localisation of enzymes in Pseudomonas and related micro-organisms. J. appl. Microbiol. 23, 400–441 (1960)Google Scholar
  8. Eisenberg, R. C., Butters, S. T., Quay, S. C., Friedman, S. B.: Glucose uptake and phosphorylation in Pseudomonas fluorescens. J. Bact 120, 147–153 (1974)Google Scholar
  9. Forster, J.: Über einige Eigenschaften leuchtender Bakterien. Zbl. Bakt. Parasitenk. 2, 337–340 (1887)Google Scholar
  10. Franklin, M., Lynch, W. H.: The effect of temperature on glucose catabolism in Pseudomonas fluorescens. Society for applied bacteriology Symposium 1976 (F. A. Skinner, J. M. Shewan, eds.) London-New York: Academic Press 1976Google Scholar
  11. Harder, W., Veldkamp, H.: Observations on marine obligately psychrophilic bacteria. 9th International Congress of Microbiology, Abst. Moscow, pp. 350 (1966)Google Scholar
  12. Harder, W., Veldkamp, H.: A continuous culture study of an obligately psychrophilic Pseudomonas sp. Arch. Mikrobiol. 59, 123–130 (1967)Google Scholar
  13. Harder, W., Veldkamp, H.: Physiology of an obligately psychrophilic marine Pseudomonas sp. J. appl. Bact. 31, 12–23 (1968)Google Scholar
  14. Harder, W., Veldkamp, H.: Competition of marine psychrophilic bacteria at low temperature. Antonie v. Leeuwenhoek 37, 51–63 (1971)Google Scholar
  15. Hernadez, E., Johnson, M. J.: Energy supply and cell yield in aerobically grown micro-organisms. J. Bact. 94, 996–1001 (1967)Google Scholar
  16. Ingraham, J. L., Stokes, J. L.: Psychrophilic bacteria. Bact. Rev. 23, 97–108 (1959)Google Scholar
  17. Lawrence N. L., Wilson, D. C., Pederson, C. S.: The growth of yeasts in grape juice stored at low temperature. Appl. Microbiol. 7, 7–11 (1959)Google Scholar
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–276 (1951)Google Scholar
  19. Morita, R. Y.: Marine psychrophilic bacteria. Oceanogr. Mar. Biol. Ann. Rev. 4, 105–121 (1966)Google Scholar
  20. Morita, R. Y., Albright, L. J.: Cell yields of Vibrio marinus an obligate psychrophile at low temperature. Canad. J. Microbiol. 11, 221–227 (1964)Google Scholar
  21. Morita, R. Y., Haight, R. D.: Temperature effects on the growth of an obligately psychrophilic marine bacterium. Limnol. Oceanogr. 9, 103–106 (1964)Google Scholar
  22. Munro, H. N., Fleck, A.: The determination of nucleic acids. Meth. biochem. Anal. 14, 113–120 (1966)Google Scholar
  23. Oppenheimer, C. H., Drost-Hansen, W.: A relationship between multiple temperature optimic for biological systems and the properties of water. J. Bact. 80, 21–24 (1960)Google Scholar
  24. Ornston, L. N.: Regulation of catabolic pathways in Pseudomonas. Bact. Rev 35, 87–116 (1971)Google Scholar
  25. Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. roy. Soc. B 163, 224–231 (1965)Google Scholar
  26. Sieburth, J. McN.: Seasonal selection of estuarine bacteria by water temperature. J. exp. mar. biol. Ecol. 1, 98–121 (1967)Google Scholar
  27. Stanley, S. O., Rose, A. H.: Bacteria and yeasts from lakes on Deception Island. Proc. roy. Soc. B 252, 199–207 (1967)Google Scholar
  28. Stokes, J. L.: General biology and nomenclature of psychrophilic micro-organisms. In: Recent progress in microbiology (N. E. Gibbons, ed.), Symposium of 8th International Congress of Microbiology, Montreal 1962, pp 187–192. Toronto: University of Toronto Press 1963Google Scholar
  29. Tajima, K., Daiku, K., Ezoure, Y., Kimoura, Y., Saikai, M.: Procedure for the isolation of psychrophilic marine bacteria. Effect of the ocean environment on microbial activities (R. R. Colwell, R. Y. Morita, eds.). Maryland: University Park Press 1974Google Scholar
  30. Tempest, D. W., Hunter, J. R.: The influence of temperature and pH value on the macromolecular composition of magnesium limited and glycerol limited Aerobacter aerogenes growing in a chemostat. J. gen. Microbiol. 41, 267–273 (1965)Google Scholar
  31. Wilkins, P. O.: Psychotrophic Gram-positive bacteria: Temperate effects on growth and solute uptake. Canad. J. Microbiol. 19, 909–915 (1973)Google Scholar
  32. Wilkins, P. O., Bourgeois, R., Murray, R. G. E.: Psychotrophic properties in Listeria monocytogenes. Canad. J. Microbiol. 18, 543–551 (1972)Google Scholar
  33. Wirsen, C. O., Jannasch, H. W.: Growth response of Spirosoma sp. to temperature shifts in continuous culture. Bact. Proc. (Abs.) E 118, p. 32 (1970)Google Scholar
  34. Zobell, C. E.: Microbiological activities at low temperature with particular reference to marine bacteria. Quart. Rev. Biol. 9, 460–466 (1934)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. A. Herbert
    • 1
  • C. R. Bell
    • 2
  1. 1.Department of Biological SciencesThe UniversityDundeeScotland
  2. 2.Department of BiologyUniversity of New BrunswickFrederictonCanada

Personalised recommendations