Histochemistry

, Volume 79, Issue 3, pp 443–456 | Cite as

Über hydrophobe Acridinfarbstoffe zur Fluorochromierung von Mitochondrien in lebenden Zellen

1. Mitteilung: Thermodynamische und spektroskopische Eigenschaften von 10-n-Alkyl-acridiniumorange-chloriden
  • M. Septinus
  • W. Seiffert
  • H. W. Zimmermann
Article

Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells

1. Thermodynamic and spectroscopic properties of 10-n-alkyl-acridinium-orange-chlorides

Summary

10-n-Alkyl-acridinium-orange-chlorides (alkyl-AOs) are excellent dyes for fluorescence staining of mitochondria in living cells. The thermodynamic and spectroscopic properties of the series alkyl=methyl to nonyl have been investigated. The dyes form dimers in aqueous solution. The dimerisation is mainly a consequence of the hydrophobic interaction. The dissociation constant K respectively association constant K−1 of the dimers describes the hydrophobic interaction and therefore the hydrophobic properties of the dye cations. The dissociation constant K=K0at the standard temperature T=298 K has been determined spectroscopically in aqueous solution. It depends on the length of the alkyl residue n-CmH2m+1 (m=1–9) (Table 2). In addition the standard dissociation enthalpies (energies) Δ H0 and dissociation entropies Δ S0 have been determined from the temperature dependence of K (Table 2). With increasing chain length m the thermodynamic parameters K0, Δ H0, Δ S0 decrease. Therefore with growing m the dimers are stabilized. This stabilization is an entropic effect which is diminished by the energetic effect. The change of the thermodynamic parameters with m is in agreement with the concept of hydrophobic interaction and the stabilization of water structure in the surroundings of hydrophobic residues. As one would expect nonyl-AO is the most hydrophobic dye of the series. As an example the spectroscopic properties of nonyl-AO have been determined. We measured the absorption, luminescence and polarization spectra in rigid ethanol at 77 K. Under these conditions alkyl-AOs associate like dyes in Water at room temperature. The spectra depend on the concentration of the solution. In very dilute solution we observe mainly the spectra of the monomers M, in concentrated solution the spectra of the dimers D. The spectra of M and D are characteristically different. The monomers have one long wave length absorption M1=20.000 cm−1 with resonance fluorescence. In addition there is a long living phosphorescence at 16.600 cm−1. Its polarization is nearly perpendicular to the plane of the AO residue. The dimers have two long wave length absorption bands D1=18.700 and D2=21.200 cm−1 with very different intensities. D1 has very low intensity and is forbitten, D2 is allowed. D1 shows fluorescence. Phosphorescence has not been observed. D1, D2and also M1 are polarized in the plane of the AO residue. At short wave length absorption and polarization spectra are very similar. From the spectra we constructed the energy level diagram of M and D (Fig. 9). The first excited state of M splits in D in two levels. The level splitting and the transition intensities agree with quantum mechanical model calculations for dimers with parallel or antiparallel molecular orientation. Hydrophobic interaction needs parallel orientation in the dimers of nonyl-AO. In the dimers of AO and of dyes with very short alkyl chains antiparallel orientation may occur.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albert A (1966) The acridines. E Arnold, LondonGoogle Scholar
  2. Constantino L, Ortona O, Sartorio R, Silvestri L, Vitagliano V (1981) Association equilibria of some 10-N-alkyl-3,6-bis-dimethyl-amino-acridinium salts in aqueous solution. Adv Mol Relax Interact Proc 20:191–198Google Scholar
  3. Dörr F, Gropper H (1962) Anisotropie der Triplett-Singulett-Phosphoreszenz aromatischer Verbindungen. Angew Chem 74:354Google Scholar
  4. Dörr F, Held M (1960) Ultraviolettspektroskopie mit polarisiertem Licht. Angew Chem 72:287–330Google Scholar
  5. Erbrich U, Berthold Th, Zimmermann HW (1982a) Über die Wirkung von Acridinfarbstoffen auf die Ultrastruktur von Mitochondrien in HeLa- und LM-Zellen. Histochemistry 76:211–218Google Scholar
  6. Erbrich U, Naujok A, Petschel, K, Zimmermann HW (1982b) Über die Vitalfluorochromierung von Mitochondrien in HeLa- und LM-Zellen mit neuen Acridinfarbstoffen. Histochemistry 74:1–7Google Scholar
  7. Erbrich U, Septinus M, Zimmermann HW (1982c) Über die Phasenumwandlung von Monoschichten des synthetischen Phospholipids DPPA und Vergleich mit DPPC. Ber Bunsenges Phys Chem 86:724–728Google Scholar
  8. Finkentey JH, Zimmermann HW (1980) Elektronenstruktur und Solvatochromie von Betain B. Ber Bunsenges Phys Chem 84:1129–1133Google Scholar
  9. Förster Th, König E (1957) Absorptionsspektren und Fluoreszenzeigenschaften konzentrierter Lösungen organischer Farbstoffe. Z Elektrochem 61:344–348Google Scholar
  10. Hill RB, Bensch KG, King DW (1959) Unimpaired mitosis in cells with modified deoxyribonucleic acid. Nature 184:1429–1430Google Scholar
  11. Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535Google Scholar
  12. Koenig H (1963) Vital staining of lysosomes by acridine orange. J Cell Biol 19:87AGoogle Scholar
  13. Levinson GS, Simpson WT, Curtis W (1957) Electronic spectra of pyridocyanine dyes with assignments of transitions, appendix. J Am Chem Soc 79:4319–4320Google Scholar
  14. Miethke E, Zanker V (1958) Lumineszenzmessungen an verschiedenen Acridinorange Derivaten. Z Phys Chem (NF) 18:375–390Google Scholar
  15. Petschel K (1982) Über die Synthese neuer Acridinfarbstoffe, Elektronenspektren und Quantenmechanische Modellrechnungen zur Elektronenstruktur und ihr Verhalten als Fluorochrome von HeLa- und LM-Zellen. Dissertation Universität Freiburg, Institut für Physikalische Chmie.Google Scholar
  16. Petschel K, Naujok A, Zimmermann HW (1982) Vitalfluorochromierung von Chromosomen und Kernstrukturen in LM- und HeLa-Zellen mit neuen Acridinfarbstoffen. Histochemistry 76:219–228Google Scholar
  17. Schütt HU, Zimmermann HW (1963) Polarisation der Elektronenbanden von Aromaten, 7. Mitteilung: Indol, Indazol. Benzimidazol, Benztriazol. Carbazol. Ber Bunsenges Phys Chem 67:54–62Google Scholar
  18. Wittekind D (1958) Bemerkungen zu dem Einfluß der Fixation auf die Fluorochromierung mit Acridinorange. Acta Histochem (Suppl) 1:247–253Google Scholar
  19. Zanker V (1952a) Über den Nachweis definierter reversibler Assoziate („reversible Polymerisate”) des Acridinorange durch Absorptions- und Fluoreszenzmessungen in wäßriger Lösung. Z Phys Chem 199:225–258Google Scholar
  20. Zanker V (1952b) Quantitative Absorptions- und Emissionsmessungen am Acridinorangekation bei Normal- und Tieftemperatur im organischen Lösungsmittel und ihr Beitrag zur Deutung des metachromatischen Fluoreszenzproblems. Z Phys Chem 200:250–292Google Scholar
  21. Zanker V (1954) Die Tieftemperaturspektren einiger homologer sechsgliedriger N-Heterocyclen und ihre Entwicklung zu den Spektren der Acridinfarbstoffe. Z Phys Chem (NF) 2:52–71Google Scholar
  22. Zipfel E, Grezes JR, Seiffert W, Zimmermann HW (1982) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt, 2. Mitteilung: Eosin, Y, Erythrosin B, Tetrachlorfluoreszein. Spektroskopische Charakterisierung der reinen Farbstoffe, Assoziation von Eosin Y. Histochemistry 75:539–555Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. Septinus
    • 1
  • W. Seiffert
    • 1
  • H. W. Zimmermann
    • 1
  1. 1.Institut für Physikalische Chemie der Universität Freiburg i.Br.FreiburgGermany

Personalised recommendations