, Volume 60, Issue 2, pp 87–91 | Cite as

Utilization of keratinophilic material by selected Trichophyton terrestre spaceflight phenotypes

  • James M. Veselenak
  • Paul A. Volz


Phenotypic strains of Trichophyton terrestre Durie & Frey produced variations in hyphal growth patterns and conidial production when subjected to human hair collected from a single source. The strains were grown from wild type conidia irradiated in space with selected wavelengths of ultraviolet light.


Growth Pattern Ultraviolet Light Single Source Human Hair Hyphal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, A.J.E. & F.W. Chattaway. 1955. The attack of chemically modified keratin by certain dermatophytes. J. Invest. Derm. 24: 65–74.Google Scholar
  2. 2.
    Daniels, G. 1953. The digestion of human hair keratin by Microsporum canis Bodin. J. Gen. Microbiol. 8: 289–294.Google Scholar
  3. 3.
    Dublin, M. & P.A. Volz. 1973. Space related research in mycology concurrent with the first decade of manned space exploration. Space Life Sciences 4: 41–48.Google Scholar
  4. 4.
    Galgoczy, J. & E.K. Novak. 1966. Investigations on the hair digestion by dermatophyta. Mycopath. Mycol. Appl. 28: 71–76.Google Scholar
  5. 5.
    Hsu, Y.C. & P.A. Volz. 1975. Penetration of Trichophyton terrestre in human hair. Mycopath. Mycol. Appl. 55: 179–183.Google Scholar
  6. 6.
    Mercer, E.H. & B.S. Verma. 1963. Hair digested by Trichophyton mentagrophytes. Archives of Dermatol. 87: 357–360.Google Scholar
  7. 7.
    Raubitschek, F. 1957. In vitro invasion of hair by dermatophytes. J. Invest. Derm. 29: 161–164.Google Scholar
  8. 8.
    Sawyer, R.T., D.C. Deskins & P.A. Volz. 1974. Phosphoglyceride contents of Trichophyton terrestre and a phenotype selected from the Apollo 16 MEED. Appl. Microbiol. 29: 658–662.Google Scholar
  9. 9.
    Taylor, A.M. 1970. Final report design feasibility study for construction of a Microbial Ecology Evaluation Device (MEED). NAS 9-10830. Aerojet Medical and Biological Systems, El Monte, California. 168 pp.Google Scholar
  10. 10.
    Vanbreuseghem, R. 1952. Keratin digestion by dermatophytes: A specific diagnostic method. Mycologia 44: 176–182.Google Scholar
  11. 11.
    Veselenak, J.M. & P.A. Volz. 1972. The Apollo 16 MEED mycology incorporated tests. In: The ASEE NASA 1972 Annual Publication. Washington, D.C.Google Scholar
  12. 12.
    Volz, P.A. 1974. The Apollo 16 Microbial Ecology Evaluation Device mycology studies. 1971–1974. National Aeronautics and Space Administration. NAS 9-11562. Houston, Texas. 325 pp.Google Scholar
  13. 13.
    Volz, P.A. & M. Dublin. 1973. Filamentous fungi exposed to selected ultraviolet light parameters of space. Space Life Sciences 4: 402–414.Google Scholar
  14. 14.
    Volz, P.A., Y.C. Hsu, J.L. Hiser, J.M. Veselenak & D.E. Jerger. 1974. The Microbial Ecology Evaluation Device mycology spaceflight studies of Apollo 16. Mycopath. Mycol. Appl. 54: 221–233.Google Scholar
  15. 15.
    Volz, P.A. & D.E. Jerger. 1973. Fungal growth on fabrics selected for space flight. Amer. Fabrics 98: 75.Google Scholar
  16. 16.
    Wurzburger, A.J. & P.A. Volz. 1976. Growth sensitivities to drugs of fungal phenotypes exposed to deep space irradiation. Phytologia 33: 63–77.Google Scholar

Copyright information

© Kluwer Academic Publishers 1977

Authors and Affiliations

  • James M. Veselenak
    • 1
  • Paul A. Volz
    • 1
  1. 1.Mycology LaboratoryEastern Michigan UniversityYpsilantiUSA

Personalised recommendations