, Volume 43, Issue 1, pp 11–32 | Cite as

Enzyme histochemical observations on the segmentation of the proximal tubules in kidney of the female rat

  • N. O. Jacobsen


The segmentation of the proximal tubules in the kidney of the female rat was studied by means of enzyme histochemical reactions and the results compared with those observed in the male and recently described by Jacobsen and Jørgensen (1973a). Reactions were performed for the following soluble, coenzyme-dependent oxido-reductases: glucose 6-phosphate dehydrogenase, α-glycerophosphate dehydrogenase, 3 α-hydroxysteroid dehydrogenase, NAD-as well as NADP-dependent isocitrate dehydrogenases, NAD-dependent malate dehydrogenase, NADP-dependent, decarboxylating malate dehydrogenase, uridine diphosphate glucose dehydrogenase. Measures were taken to reduce enzyme diffusion and eliminate interference from tissue tetrazolium reductases. Furthermore, reactions were performed for a number of less soluble or insoluble enzymes: glucose 6-phosphatase, mitochondrial α-glycerophosphate dehydrogenase, β-hydroxybutyrate dehydrogenase, succinate dehydrogenase and tetrazolium reductases.

In the proximal tubules of the female rat all enzymes studied—except β-hydroxybutyrate dehydrogenase—showed segmental differences, most of them clearly revealing three segments. Sex differences were found concerning all enzymes except uridine diphosphate glucose dehydrogenase and NADP-dependent isocitrate dehydrogenase. The most pronounced sex-related differences were seen in the third segment in which part the male rat showed highest activity in respect to tetrazolium reductases, NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase, β-hydroxybutyrate dehydrogenase, 3 α-hydroxysteroid dehydrogenase and glucose 6-phosphate dehydrogenase and the female in respect to glucose 6-phosphatase, α-glycerophosphate dehydrogenases, and NADP-dependent, decarboxylating malate dehydrogenase. A few of the enzymes exhibited minor sex differences in the first two segments.


Proximal Tubule Succinate Dehydrogenase Malate Dehydrogenase Uridine Diphosphate Glucose Tetrazolium Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, F. P., Chayen, J.: Retention of nitrogenous material in unfixed sections during incubation for histochemical demonstration of enzymes. Nature (Lond.) 207, 1205–1206 (1965)Google Scholar
  2. Balogh, K.: Histochemical demonstration of 3α-hydroxysteroid dehydrogenase activity. J. Histochem. Cytochem. 14, 77–83 (1966)Google Scholar
  3. Barka, T., Anderson, P. J.: Histochemistry. Theory, practice and bibliography. New York-Evanston-London: Hoeber 1963Google Scholar
  4. Barker, S. B., Klitgaard, H. M.: Metabolism of tissues excised from thyroxine-injected rats. Amer. J. Physiol. 170, 81–86 (1952)Google Scholar
  5. Bowman, H. M., Hook, J. B.: Sex differences in organic ion transport by rat kidney. Proc. Soc. exp. Biol. (N.Y.) 141, 258–262 (1972)Google Scholar
  6. Brdiczka, D., Pette, D.: Intra- and extramitochondrial isozymes of (NADP) malate dehydrogenase. Europ. J. Biochem. 19, 546–551 (1971)Google Scholar
  7. Bücher, T., Klingenberg, M.: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chem. 70, 552–270 (1958)Google Scholar
  8. Burch, H. B., Lowry, O. H., Delaney, L. M.: Enzymes of glycerol metabolism in developing rat liver and kidney. Enzyme 17, 168–178 (1974)Google Scholar
  9. Cahn, R. D., Kaplan, N. O., Levine, L., Zwilling, E.: Nature and development of lactic dehydrogenases. Science 136, 962–969 (1962)Google Scholar
  10. Campbell, J. G.: The intracellular localization of β-glucuronidase. Brit. J. exp. Path. 30, 548–554 (1949)Google Scholar
  11. Cascarano, J., Zweifach, B. W.: Factors influencing the histochemical demonstration of coenzyme-dependent dehydrogenases and diaphorases. J. biophys. biochem. Cytol. 5, 309–317 (1959)Google Scholar
  12. Clark, L. C., Kochakian, C. D., Fox, R. P.: The effect of castration and testosterone propionate on d-amino acid oxidase activity in the mouse. Science 98, 89 (1943)Google Scholar
  13. Dahl, H. A., From, S. H.: Some effects of polyvinyl alcohol and polyvinyl pyrrolidone on the activity of lactate dehydrogenase and its isoenzymes. Histochemie 25, 182–190 (1971)Google Scholar
  14. Dahl, H. A., Mellgren, S. I.: The effect of polyvinyl alcohol and polyvinyl pyrrolidone on diffusion artifacts in lactate dehydrogenase histochemistry. Histochemie 24, 354–370 (1970)Google Scholar
  15. Dawson, A. P., Thorne, C. J. R.: The reaction of mitochondrial L-3-glycerophosphate dehydrogenase with various electron acceptors. Biochem. J. 114, 35–40 (1969)Google Scholar
  16. Deimling, O. v.: Enzymarchitektur der Niere und Sexualhormone. Untersuchungen an Nagernieren. Progr. Histochem. Cytochem. 1, 1–50 (1970)Google Scholar
  17. Deimling, O. v., Wessels, C. H., Ottermann, U., Noltenius, H.: Hormonabhängige Enzymverteilung in Geweben. VII. Die quantitative Verteilung der alkalischen Nierenphosphatase bei normalen Ratten beiderlei Geschlechts. Histochemie 8, 200–215 (1967)Google Scholar
  18. Dunn, T. B.: Sex difference in the alkaline phosphatase distribution in the kidney of the mouse. Amer. J. Path. 24, 719–720 (1948)Google Scholar
  19. Fahimi, H. D., Amarasingham, C. R.: Cytochemical localization of lactic dehydrogenase in white skeletal muscle. J. Cell Biol. 22, 29–48 (1964)Google Scholar
  20. Farber, E., Bueding, E.: Histochemical localization of specific oxidative enzymes. V. The dissociation of succinic dehydrogenase from carriers by lipase and the specific histochemical localization of the dehydrogenase with phenazine methosulfate and tetrazolium salts. J. Histochem. Cytochem. 4, 357–362 (1956)Google Scholar
  21. Farris, E. J., Griffith, J. Q. (eds.): The rat in laboratory investigation, 2nd ed. Philadelphia: Lippincott 1949Google Scholar
  22. Fener, G., Liscio, A.: Origin of delayed development of drug metabolism in the newborn rat. Nature (Lond.) 223, 68–70 (1969)Google Scholar
  23. Feuer, G., Sosa-Lucero, J. C., Lumb, G., Moddel, G.: Failure of various drugs to induce drug-metabolizing enzymes in extrahepatic tissues of the rat. Toxicol. appl. Pharmacol. 19, 579–589 (1971)Google Scholar
  24. Garbarsch, C.: I. Distribution of urea-stable and urea-labile lactate dehydrogenase activity in rabbit aorta following a single mechanical dilatation injury; a histochemical study on methodology and histotopography. Acta histochem. (Jena) 46, 288–299 (1973)Google Scholar
  25. Harvey, A. M., Malvin, R. L.: The effect of androgenic hormones on creatinine secretion in the rat. J. Physiol. (Lond.) 184, 883–888 (1966)Google Scholar
  26. Henderson, N. S.: Isozymes and genetic control of NADP-malate dehydrogenase in mice. Arch. Biochem. Biophys. 117, 28–33 (1966)Google Scholar
  27. Herzfeld, A., Knox, W. E.: The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissues. J. biol. Chem. 243, 3327–3332 (1968)Google Scholar
  28. Hess, R., Pearse, A. G. E.: Histochemical demonstration of uridine diphosphate glucose dehydrogenase. Experientia (Basel) 17, 317–318 (1961)Google Scholar
  29. Hess, R., Scarpelli, D. G., Pearse, A. G. E.: The cytochemical localization of oxidative enzymes. II. Pyridine nuclotide-linked dehydrogenases. J. biophys. biochem. Cytol. 4, 753–760 (1958)Google Scholar
  30. Huang, K. C., McIntosh, B. J.: Effect of sex hormones on renal transport of p-aminohippuric acid. Amer. J. Physiol. 183, 387–390 (1955)Google Scholar
  31. Hunter, F., Hagy, G. W.: Interactions of tissue glucose-6-phosphate dehydrogenase (G6PD) activity with age and sexual development in the rat. Endokrinologie 54, 85–97 (1969)Google Scholar
  32. Hurlock, B., Talalay, P.: 3 α-hydroxysteroids as coenzymes of hydrogen transfer between di- and triphosphopyridine nucleotides. J. biol. Chem. 233, 886–893 (1958)Google Scholar
  33. Høyer, P. E., Andersen, H.: Specificity in steroid histochemistry, with special reference to the use of steroid solvents, distribution of 11 β-hydroxysteroid dehydrogenase in kidney and thymus from the mouse. Histochemie 24, 292–306 (1970)Google Scholar
  34. Jacobsen, N. O.: The histochemical localization of lactic dehydrogenase isoenzymes in the rat nephron by means of an improved polyvinyl alcohol method. Histochemie 20, 250–265 (1969)Google Scholar
  35. Jacobsen, N. O., Jørgensen, F.: Further enzyme histochemical observations on the segmentation of the proximal tubules in the kidney of the male rat. Histochemie 34, 11–32 (1973a)Google Scholar
  36. Jacobsen, N. O., Jørgensen, F.: Ultrastructural observations on the pars descendens of the proximal tubule in the kidney of the male rat. Z. Zellforsch. 136, 479–499 (1973b)Google Scholar
  37. Jacobsen, N. O., Jørgensen, F.: Ultrastructural observations on the pars descendens of the proximal tubule in the kidney of the female rat. In preparation (1975)Google Scholar
  38. Jacobsen, N. O., Jørgensen, F., Thomsen, Å. Chr.: On the localization of some phosphatase in three different segments of the proximal tubules in the rat kidney. J. Histochem. Cytochem. 15, 456–469 (1967)Google Scholar
  39. Jakobsson, S., Thor, H., Orrenius, S.: Fatty acid inducible cytochrome P-454 of rat kidney cortex microsomes. Biochem. biophys. Res. Commun. 39, 1073–1080 (1970)Google Scholar
  40. Kaplan, N. O., Everse, J., Admiraal, J.: Significance of substrate inhibition of dehydrogenases. Ann. N.Y. Acad. Sci. 151, 400–412 (1968)Google Scholar
  41. Kato, R.: Possible role of P-450 in the oxidation of drugs in liver microsomes. J. Biochem. (Tokyo) 59, 574–583 (1966)Google Scholar
  42. Kleinman, L. I., Loewenstein, M. S., Goldstein, L.: Sex difference in the transport of p-aminohippurate by the rat kidney. Endocrinology 78, 403–406 (1966)Google Scholar
  43. Kochakian, C. D.: The effect of castration and various steroids on the arginase activity of the tissues of the mouse. J. biol. Chem. 155, 579–589 (1944)Google Scholar
  44. Kochakian, C. D.: The effect of various steroid hormones on the “alkaline” and “acid” phosphatases of the kidney of the mouse. Amer. J. Physiol. 145, 118–122 (1945)Google Scholar
  45. Kochakian, C. D., Fox, R. P.: The effect of castration and testosterone propionate on the “alkaline” and “acid” phosphatases of the kidney, liver and intestine of the mouse. J. biol. Chem. 153, 669–674 (1944)Google Scholar
  46. Kochakian, C. D., Robertson, E.: The effect of androgens and hypophysectomy on arginase and phosphatases of the kidneys and liver of the rat. Arch. Biochem. 29, 114–123 (1950)Google Scholar
  47. Kunze, K. D.: Beitrag zur Histochemie der Laktatdehydrogenase. Histochemie 11, 350–359 (1967)Google Scholar
  48. Kunze, K. D.: Zur Histotopochemie der Glycerinphosphatdehydrogenasen in der Niere männlicher Albinoratten. Acta histochem. (Jena) 44, 278–287 (1972)Google Scholar
  49. Lardy, H. A., Lee, U.-P., Takemori, A.: Enzyme responses to thyroid hormones. Ann. N.Y. Acad. Sci. 86, 506–511 (1960)Google Scholar
  50. Lee, Y.-P., Lardy, H. A.: Influence of thyroid hormones on L-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat. J. biol. Chem. 240, 1427–1436 (1965)Google Scholar
  51. Leeflang-de Pijper, A. M., Hülsmann, W. C.: Pitfalls in histochemical localization studies of NADPH generating enzymes or enzyme systems in rat small intestine. Histochemistry 39, 143–153 (1974)Google Scholar
  52. Long, J. A., Evans, H. McLean: The oestrus cycle in the rat and its associated phenomena. Mem. Univ. Calif. 6, 1–148 (1922)Google Scholar
  53. MacLeod, S. M., Renton, K. W., Eade, N. R.: Development of hepatic microsomal drug-oxidizing enzymes in immature male and female rats. J. Pharmacol. exp. Ther. 183, 489–498 (1972)Google Scholar
  54. Maunsbach, A. B.: Observations on the segmentation of the proximal tubule in the rat kidney. J. Ultrastruct. Res. 16, 239–258 (1966)Google Scholar
  55. McMillan, P. J.: Differential demonstration of muscle and heart type lactic dehydrogenase of rat muscle and kidney. J. Histochem. Cytochem. 15, 21–31 (1967)Google Scholar
  56. Meijer, A. E. F. H.: Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. III. Lactate dehydrogenase. Histochemie 35, 165–172 (1973)Google Scholar
  57. Mellgren, S. I.: The distribution of lactate dehydrogenase (lactate tetrazolium reductase) in the hippocampal region of the rat. Z. Zellforsch. 120, 187–203 (1971)Google Scholar
  58. Mühlenfeld, W.-E.: Über die Entwicklung und Chemodifferenzierung der Rattenniere unter besonderer Berücksichtigung der Geschlechtsunterschiede. Histochemie 18, 97–131 (1969)Google Scholar
  59. Nachlas, M. M., Tsou, K.-C., de Souza, E., Cheng, C.-S., Seligman, A. M.: Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5, 420–436 (1957)Google Scholar
  60. Orsoni, J., Rohr, H. P., Gloor, F.: Morphometric characterization of the different segments of the renal tubular apparatus in the rat. Path. europ. 4, 345–360 (1969)Google Scholar
  61. Pearse, A. G. E.: Histochemistry, theoretical and applied, 3rd ed., vol. 2. London: Churchill Livingstone 1972Google Scholar
  62. Pette, D., Brandau, H.: Intracellular localization of glycolytic enzymes in cross-striated muscles of locusta migratoria. Biochem. biophys. Res. Commun. 9, 367–370 (1962)Google Scholar
  63. Pette, D., Klingenberg, M., Bücher, T.: Comparable and specific proportions in the mitochondrial enzyme activity pattern. Biochem. biophys. Res. Commun. 7, 425–429 (1962)Google Scholar
  64. Resco, J. A., Feder, H. H., Goy, R. W.: Androgen concentrations in plasma and testis of developing rats. J. Endocr. 40, 485–491 (1968)Google Scholar
  65. Riggs, T. R., Walker, L. M.: Sex hormone modification of tissue levels and urinary excretion of α-aminoisobuturic acid in the rat. Endocrinology 73, 781–788 (1963)Google Scholar
  66. Ritter, J., Wenk, H., Gerth, C.: Quantitative Untersuchungen zum Diffusionsproblem enzymatisch reduzierter Pyridinnucleotide; ein Beitrag zum histochemischen Nachweis pyridinnucleotid-abhängiger Dehydrogenasen. Acta histochem. (Jena) 40, 51–63 (1971)Google Scholar
  67. Rubin, B. L.: Sex differences in orientation of reduction products of 3-keto-C19 steroids by rat liver homogenates. J. biol. Chem. 227, 917–927 (1957)Google Scholar
  68. Ryan, K. J., Meigs, R. A., Petro, Z., Morrison, G.: Estrogen-induced 16-hydroxysteroid dehydrogenase activity in rat kidney. Science 142, 243–244 (1963)Google Scholar
  69. Sato, R., Omura, T., Nishibayashi, H.: Carbon monooxide-binding hemoprotein and NADPH-specific flavoprotein in liver microsomes and their roles in microsomal electron transfer. In: Oxidases and related redox systems. Proceedings of an international symposium, Amhurst (Mass.), 1964, vol. 2, edit. by Tsoo E. King, Howard S. Mason and Martin Morrison, p. 861–878. New York: John Wiley and Son 1965Google Scholar
  70. Sauer, L. A.: An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions. Biochem. biophys. Res. Commun. 50, 524–531 (1973)Google Scholar
  71. Scarpelli, D. G., Hess, R., Pearse, A. G. E.: The cytochemical localization of oxidative enzymes. I. Diphosphopyridine nucleotide diaphorase and triphosphopyridine nucleotide diaphorase. J. biophys. biochem. Cytol. 4, 747–751 (1958)Google Scholar
  72. Schiebler, T. H., Mühlenfeld, E.: Über die geschlechtsspezifische Chemodifferenzierung der Rattenniere. Naturwissenschaften 53, 311 (1966)Google Scholar
  73. Schriefers, H.: Factors regulating the metabolism of steroids. Vitam. and Horm. 25, 271–314 (1967)Google Scholar
  74. Schultze, M. O., Kuiken, K. A.: The effect of deficiencies in copper and iron on the catalase activity of rat tissues. J. biol. Chem. 137, 727–734 (1941)Google Scholar
  75. Shrago, E., Lardy, H. A., Nordlie, R. C., Foster, D. O.: Metabolic and hormonal control of phosphoenolpyruvate carboxykinase and malic enzyme in rat liver. J. biol. Chem. 238, 3188–3192 (1963)Google Scholar
  76. Sitte, H.: Beziehungen zwischen Zellstruktur und Stofftransport in der Niere. In: Sekretion und Exkretion. Ed. K. E. Wohlfarth-Bottermann, p. 343–370. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  77. Snyder, S. H., Axelrod, J.: Sex differences and hormonal control of histamine methyltransferase activity. Biochim. biophys. Acta (Amst.) 111, 416–421 (1965)Google Scholar
  78. Soyka, L. F.: Determinants of hepatic aminopyrine demethylase activity. Biochem. Pharmacol. 18, 1029–1038 (1969)Google Scholar
  79. Tanner, G. A., Isenberg, M. T.: Secretion of p-aminohippurate by rat kidney proximal tubules. Amer. J. Physiol. 219, 889–892 (1970)Google Scholar
  80. Tissieres, A.: L influence de la castration, du testosterone et de l'oestradiol sur les phosphatases du rein chez le rat. Acta anat. (Basel) 5, 235–242 (1948)Google Scholar
  81. Tomkins, G. M.: A mammalian 3α-hydroxysteroid dehydrogenase. J. biol. Chem. 218, 437–447 (1956)Google Scholar
  82. Wachstein, M., Meisel, E.: On the histochemical demonstration of glucose 6-phosphatase. J. Histochem. Cytochem. 4, 592 (1956)Google Scholar
  83. Walker, D. G., Seligman, A. M.: The use of formalin fixation in the cytochemical demonstration of succinic and DPN- and TPN-dependent dehydrogenases in mitochondria. J. biophys. biochem. Cytol. 16, 455–470 (1963)Google Scholar
  84. Wattenberg, L. W., Leong, J. L.: Effects of coenzyme Q10 and menadione on succinic dehydrogenase activity as measured by tetrazolium salt reduction. J. Histochem. Cytochem. 8, 296–303 (1960)Google Scholar
  85. Wenk, H.: Dehydrogenaseverteilung in Pfortadernieren. Vergleichende histochemische Untersuchungen an den Nieren von Frosch, Taube und Albinoratte. Z. mikr.-anat. Forsch. 74, 407–435 (1966)Google Scholar
  86. Wenk, H.: Beitrag zum histochemischen Nachweis löslicher NAD-abhängiger Dehydrogenase mittels PVA-Gelinkubation. Acta histochem. (Jena) 35, 380–391 (1970)Google Scholar
  87. Wenk, H., Meyer, U., Ritter, J.: Beitrag zum histochemischen Nachweis pyridinnucleotidabhängiger Dehydrogenasen: eine halbquantitative Untersuchung. Acta histochem. (Jena) 38, 278–292 (1970a)Google Scholar
  88. Wenk, H., Ritter, J., Meyer, U.: Beitrag zum histochemischen Nachweis pyridinnucleotid-abhängiger Dehydrogenasen: der Einfluß von Coenzym und Phenazinmethosulfat auf die hitotopochemische Lokalisation. Acta histochem. (Jena) 37, 379–396 (1970b)Google Scholar
  89. Wise, E. M., Ball, E. G.: Malic enzyme and lipogenesis. Proc. nat. Acad. Sci. (Wash.) 52, 1255–1263 (1964)Google Scholar
  90. Wolman, M., Bubis, J. J.: Ubiquinone and phospholipids as limiting factors in the histochemical demonstration of succinic dehydrogenase activity. J. Histochem. Cytochem. 15, 79–82 (1967)Google Scholar
  91. Young, J. W., Shrago, E., Lardy, H. A.: Metabolic control of enzymes involved in lipogenesis and gluconeogenesis. Biochemistry (Wash.) 3, 1687–1692 (1964)Google Scholar
  92. Zeller, J.: Zur Cytochemie der Lysosomen in der Rattenniere unter normalen und experimentellen Bedingungen. Histochemie 35, 235–262 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • N. O. Jacobsen
    • 1
  1. 1.University Institute of PathologyKommunehospitaletÅrhusDenmark

Personalised recommendations