Skip to main content
Log in

Measuring permeability by the thermal expansion method for rigid or highly permeable gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The permeability (D) of a gel can be determined by analysis of its thermal expansion kinetics: as the gel is heated, the expanding liquid stretches the solid network like a spring; during an isothermal hold, the liquid drains out and the gel returns to its initial dimensions at a rate that depends on D and the elastic modulus of the network. However, if the network is too rigid or D is too high, the dilatation of the network may be too small to measure easily. The measured expansion increases with the viscosity of the pore liquid, so D is easier to measure after the gel is rinsed in a higher alcohol. For example, a thermally aged silica gel that shows no measurable expansion in ethanol exhibits a large thermal strain after the pore liquid is changed to 1-octanol. It is important to demonstrate that the same permeability is obtained regardless of the liquid employed (i.e., that flow in the small pores of the gel does not give rise to liquid-specific effects), so we examine the thermal expansion of a silica gel rinsed successively in ethanol, 1-octanol, and 1-decanol; the gel is compliant enough so that D is measurable in all these liquids. The permeability is found to be the same, but the expansion is much more easily measured for the more viscous alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, NY, 1990) Ch. 8.

    Google Scholar 

  2. Scherer, G.W., J. Non-Cryst. Solids 145, 33–40 (1992).

    Google Scholar 

  3. Scherer, G.W., Hdach, H. and Phalippou, J., J. Non-Cryst. Solids, 130, 157–170 (1991); correction 136, 269 (1991).

    Google Scholar 

  4. Scherer, G.W., “Thermal expansion of a viscoelastic gel”, submitted for publication in J. Sol-Gel Sci. Tech.

  5. Quinson, J.-F., Repellin Lacroix, M., Pauthe, M., Roche, A., and Scherer, G.W., “Structure and Permeability of Silica Gels”, to be published in J. Sol-Gel Sci. Tech.

  6. Brinker, C.J., Keefer, K.D., Schaefer, D.W., Assink, R.A., Kay, B.D., and Ashley, C.S., J. Non-Cryst. Solids 63, 45–59 (1984).

    Google Scholar 

  7. Scherer, G.W., J. Non-Cryst. Solids, 109, 183–190 (1989).

    Google Scholar 

  8. Scherer, G.W., Better Ceramics Through Chemistry III, eds., Brinker, C.J., Clark, D.E., Ulrich, D.R. (Mat. Res. Soc., Pittsburgh, PA, 1988) pp. 179–186.

    Google Scholar 

  9. Scherer, G.W., “Relaxation of a Viscoelastic Gel Bar: I. Theory 1, 169–175 (1994); II. Silica Gel”, to be published in J. Sol-Gel Sci. Tech.

  10. Routine CSSMH, from IMSL, Inc., 2500 Permian Tower, 2500 City West Boulevard, Houston, TX 77042.

  11. Scherer, G.W., J. Non-Cryst. Solids, 142 [1–2] (1992) 18–35.

    Google Scholar 

  12. Gross, J., Reichenauer, G., and Fricke, J., J. Phys. D: Appl. Phys. 21, 1447–1451 (1988).

    Google Scholar 

  13. Scherer, G.W., Pardenek, S.A., and Swiatek, R.M., J. Non-Cryst. Solids 107, 14–22 (1988).

    Google Scholar 

  14. Roche, A., Dumas, J., and Quinson, J.F., Romand, M., in Mechanics and Mechanisms of Damage in Composite and Multi-Materials, ed. D. Baptiste (Mechanical Eng. Publ., London, 1991), pp. 269–299.

    Google Scholar 

  15. DuPont Co., Corporate Center for Analytical Science, Experimental Station, Wilmington, DE, USA.

  16. Weast, R.C. and Astle, M.J., eds. Handbook of Chemistry and Physics, 62nd Ed. (CRC Press, Boca Raton, FL, 1982) p. F-3.

    Google Scholar 

  17. Costello, J.M. and Bowden, S.T., Recueil Trav. Chim. Pays-Bas 77, 36–46 (1958).

    Google Scholar 

  18. Hales, J.L. and Ellender, J.H., J. Chem. Thermo. 8, 1177–1184 (1976).

    Google Scholar 

  19. Hatch, L.F., Ethyl Alcohol (Enjay Chemical Co., New York, 1962) Ch. 11.

    Google Scholar 

  20. Osborne, N.S., McKelvy, E.C., and Bearce, H.W., Bull. Nat. Bur. Standards, 9, 327–474 (1913)

    Google Scholar 

  21. Lange's Handbook of Chemistry, 11th ed., ed. J.A. Dean (McGraw-Hill, New York, 1973) p. 10–279.

    Google Scholar 

  22. Organic Solvents, 4th ed., eds. J.A. Riddick, W.B. Bunger, and T.K. Sakano (Wiley, New York, 1986) pp. 31–33.

    Google Scholar 

  23. International Critical Tables, 1st ed., Vol. V, ed. E.W. Washburn (McGraw-Hill, New York, 1929) p. 11.

    Google Scholar 

  24. Carrara, G. and Ferrari, G., Gazz. Chim. Ital. 36, 419–429 (1906).

    Google Scholar 

  25. Dorough, G.L., Glass, H.B., Gresham, T.L., Malone, G.B., and Reid, E.E., J. Am. Chem. Soc. 63, 3100–3110 (1941).

    Google Scholar 

  26. Dreisbach, R.R. and Martin, R.A., Ind. Eng. Chem. 41, 2875–2878 (1949).

    Google Scholar 

  27. Findenegg, G.H., Monat. Chem. 104, 998–1007 (1973).

    Google Scholar 

  28. Jelinek, R.M., and Leopold, H., Monat. Chem. 109, 387–393 (1967).

    Google Scholar 

  29. Matsuo, S. and Makita, T., Int. J. Thermophys. 10 [4] 885–897 (1989).

    Google Scholar 

  30. Mumford, S.A. and Phillips, J.W.C., J. Chem. Soc. Part I, 75–84 (1950).

  31. Bingham, E.C. and Darrel, L.B., J. Rheol. 1, 174–205 (1929/30).

    Google Scholar 

  32. Connor, W.P., and Smyth, C.P., J. Amer. Chem. Soc. 65, 382–389 (1933).

    Google Scholar 

  33. Deffet, L., Bull. Soc. Chim. Belg. 40, 385–402 (1931).

    Google Scholar 

  34. Dunstan, A.E., Thole, F.B., and Benson, P., J. Chem. Soc. 105, 782–795 (1914).

    Google Scholar 

  35. Tsvetkow, V.N. and Frisman, E., Doklady Akad. Nauk SSSR 67, 49–52 (1949).

    Google Scholar 

  36. Kao, C.H. and Ma, S.-Y., Sci. Rep. Tsing Hua Univ. A, 1, 182 (1931/32).

    Google Scholar 

  37. Kuss, V.E., Z. ang. Phys. 7, 372–378 (1955).

    Google Scholar 

  38. Schultz, G., Chem. Ber. 42, 3609–3612 (1909).

    Google Scholar 

  39. Weissler, A., J. Amer. Chem. Soc. 70, 1634–1640 (1948).

    Google Scholar 

  40. Rathmann, G.B., Curtis, A.J., McGeer, P.L., and Smith, C.P., J. Amer. Chem. Soc. 78, 2035–2038 (1956).

    Google Scholar 

  41. Watson, J. and Zerda, T.W., Appl Spectroscopy 45, 1360–1365 [8] (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, G.W. Measuring permeability by the thermal expansion method for rigid or highly permeable gels. J Sol-Gel Sci Technol 3, 31–40 (1994). https://doi.org/10.1007/BF00490146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00490146

Keywords

Navigation