Skip to main content
Log in

Sodium and calcium localization in cells and tissues by precipitation with antimonate: A quantitative study

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Komnick's antimonate technique, which was devised to localize Na+ in cells and tissues, was studied quantitatively. Some modifications, as well as its application to Ca2+ localization, were also investigated.

We combined measurements of Na+ and Ca2+ retention in plant roots during the various procedures, electron microscopy, autoradiography, and semiquantitative X-ray microanalysis. We were able to show that (at least in barley roots) antimonate does not precipitate at all with Na+, irrespective of the Na+ content of the tissue or the method of antimonate application. (Even during precipitative freeze dissolution or after freeze drying, no Na+ is precipitated.) By means of Komnick's antimonate technique Ca2+ is trapped within the tissue, but only after serious dislocation. Perspectives for reliable localization of diffusible ions in cells and tissues, by precipitation simultaneously with conventional fixations, are bad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, G.A.: Localization of pyroantimonate precipitable cations and surface coat anionic binding sites in developing erythrocytic cells and macrophages in normal human bone marrow. Z. Zellforsch. Mikrosk. Anat. 134, 153–166 (1972)

    Google Scholar 

  • Ackerman, G.A., Clark, M.A.: A cytochemical evaluation of pyroantimonate binding to the plasmalemma of blood and bone marrow cells and its relation to cellular maturation. J. Histochem. Cytochem. 20, 880–895 (1972)

    Google Scholar 

  • Amakawa, T., Mizuhira, V., Uchida, H., Shiina, S., Tsuji, K.: Evaluation of the sodium detection method. 22Na electron microscopic autoradiography. J. Electron. Microsc. 17, 267 (1968)

    Google Scholar 

  • Biddulph, S.F.: A microautoradiographic study of Ca45 and Sr35 distribution in the intact bean root. Planta 74, 350–368 (1967)

    Google Scholar 

  • Böck, P.: Eletronenmikroskopischer Nachweis von Na+, Ca++ und Cl in der laktierenden Milchdrüse des Meerschweinchens. Cytobiologie 2, 68–82 (1970)

    Google Scholar 

  • Bulger, R.E.: Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissues. J. Cell Biol. 40, 79–94 (1969)

    Google Scholar 

  • Cardasis, C.A., Schuel H., Herman, L.: Ultrastructural localization of calcium in unfertilized sea urchin eggs. J. Cell Sci. 77, 101–115 (1978)

    Google Scholar 

  • Chandler, J.A.: X-ray microanalysis in the electron microscope. Amsterdam, New York, Oxford: North Holland 1977

    Google Scholar 

  • Chandler, J.A., Battersby, S.: X-ray microanalysis of zinc and calcium in ultrathin sections of human sperm cells using the pyroantimonate technique. J. Histochem. Cytochem. 24, 740–748 (1976)

    Google Scholar 

  • Chandler, J.A., Sinowats, F., Timms, B.G., Pierrepoint C.G.: The subcellular distribution of zinc in dog prostate studied by X-ray analysis. Cell Tissue Res. 185, 89–103 (1977a)

    Google Scholar 

  • Chandler, J.A. Timms, B.G., Morton, M.S.: Subcellular distribution of zinc in rat prostrate studied by X-ray analysis. I. Normal prostate. Histochem. J. 9, 103–120 (1977b)

    Google Scholar 

  • Clark, M.A., Ackerman, G.A.: A histochemical evaluation of the pyroantimonate osmium reaction. J. Histochem. Cytochem. 19, 727–738 (1971)

    Google Scholar 

  • Clemente, F., Meldolesi, J.: Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J. Cell. Biol. 65, 88–102 (1975)

    Google Scholar 

  • Daimon, T., Mizuhira, V., Uchida, K.: Ultrastructural localization of calcium around the membrane of the surface connected system in the human platelet. Histochemistry 55, 271–279 (1978)

    Google Scholar 

  • Garfield, R.E., Henderson, R.M., Daniel, E.E.: Evaluation of the pyroantimonate technique of localization of tissue sodium. Tissue Cell 4, 575–589 (1972)

    Google Scholar 

  • Hales, C.N., Luzio, J.P., Chandler, J.A., Herman, L.: Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells. J. Cell Sci. 15, 1–15 (1974)

    Google Scholar 

  • Hartmann, J.F.: High sodium centent of cortical astrocytes. Arch. Neurol. 14, 633–642 (1966)

    Google Scholar 

  • Herman, L., Sato, T., Hales, C.N.: The electron microscopical localization of cations to pancreatic islets of Langerhans and their possible role in insulin secretion. J. Ultrastr. Res. 42, 298–311 (1973)

    Google Scholar 

  • Hooijmans, J.J.M.: The role of calcium in the absorption of anions and cations by excised barley roots. Acta Bot. Neerl. 13, 507–540 (1964)

    Google Scholar 

  • Hooijmans, J.J.M.: Effect of the counter-ion on the uptake of potassium in excised barley roots. Acta Bot. Neerl. 17, 313–319 (1968)

    Google Scholar 

  • Katsuyama, T., Spicer, S.S.: Ionic components of secretory cell surface in relation to secretory function. Histochem. J. 9, 467–493 (1977)

    Google Scholar 

  • Kaye, G.I., Cole, J.D., Donn, A.: Electron microscopy: sodium localization in normal and ouabain treated transporting cells. Science 150, 1167–1168 (1965)

    Google Scholar 

  • Kaye, G.I., Wheeler, H.O., Whitlock, R.I., Lane, N.: Fluid transport in the rabbit gall bladder. J. Cell Biol. 30, 237–268 (1966)

    Google Scholar 

  • Kierszenbaum, A.L., Libanati, C.Y., Tandler, C.J.: The distribution of inorganic cations in mouse testis. Electron microscope and microprobe analysis. J. Cell Biol. 48, 314–323 (1971)

    Google Scholar 

  • Klein, R.L., Horton, C.R., Thureson Klein, Å.: Studies on the nuclear amino acid transport and cation content in embryonic myocardium of the chick. Am. J. Cardiol. 25, 300–310 (1970)

    Google Scholar 

  • Klein, R.L., Yen, S.S., Thureson Klein, Å.: Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy. J. Histochem. Cytochem. 20, 65–78 (1972)

    Google Scholar 

  • Komnick, H.: Elektronenmikroskopische Lokalisation von Na+ und Cl in Zellen und Geweben. Protoplasma 55, 414–418 (1962)

    Google Scholar 

  • Komnick, H., Komnick U.: Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. V Experimenteller Nachweis der Transportwege. Zellforsch. 60, 163–203 (1963)

    Google Scholar 

  • Lane, B.P., Martin, E.: Electron microprobe analysis of cationic species in pyroantimonate precipitates in epon embedded tissue. J. Histochem. Cytochem. 17, 102–106 (1969)

    Google Scholar 

  • Läuchli, A.: Untersuchungen über Verteilung und Transport von Ionen in Pflanzengewebe mit der Röntgenmikrosonde. I. Versuche an vegetativen Organen von Zea mays. Planta 75, 185–206 (1967)

    Google Scholar 

  • Legato, M.J., Langer, G.A.: The subcellular localization of calcium in mammalian myocardium. J. Cell Biol. 41, 401–423 (1969)

    Google Scholar 

  • Leggett, J.E., Gilbert, W.A.: Localization of the Ca-mediated apparent ion selectivity in the cross-sectional volume of soybean roots. Plant Physiol. 42, 1658–1664 (1967)

    Google Scholar 

  • Lüttge, U.: Mikroautoradiographischer Nachweis der Aufnahme von 35SO 4 in die Wurzelhaare von Ahornkeimlinge. Naturwissenschaften 51, 296–297 (1964)

    Google Scholar 

  • Lüttge, U., Weigl, J.: Zur Mikroautoradiographie wasserlöslicher Substanzen. Planta 64, 28–37 (1965)

    Google Scholar 

  • Mizuhira, V.: Demonstration of elemental distribution in biological tissues by means of the electron microscope and electron probe X-ray micro analyser. Acta Histochem. Cytochem. 6, 44–52 (1973)

    Google Scholar 

  • Mizuhira, V., Amakawa, T.: Detection of electrolytes in tissues at the electron microscope level with special reference to sodium ion transport mechanism in rat kidney. J. Histochem. Cytochem. 14, 770–771 (1966)

    Google Scholar 

  • Nolte, A.: Elektronenmikroskopischer Nachweis und die Lokalisation von Natrium+ und Chlorionen im proximalen Tubulusepithel der Rattenniere. Arch. Zellforsch. 72, 562–573 (1966)

    Google Scholar 

  • Ochi, J.: Elektronenmikroskopischer Nachweis der Natriumionen in den Schweissdrüsen der Rattenfussohle. 14, 300–307 (1968)

    Google Scholar 

  • Pauling, L.: The formula's of antimonic acid and the antimonates. J. Am. Chem. Soc. 55, 1895–1900 (1933)

    Google Scholar 

  • Perrelet, A., Bader, C.-R.: Morphological evidence for calcium stores in photoreceptors of the honey bee drone retina. J. Ultrastr. Res. 63, 237–243 (1978)

    Google Scholar 

  • Sato, T., Herman, L., Chandler, J.A., Stracher, A., Detweiler, T.C.: Localization of a thrombin sensitive calcium pool in platelets. J. Histochem. Cytochem. 23, 103–106 (1975)

    Google Scholar 

  • Scherrer, R., Gerhardt, P.: Localization of calcium within Bacillus spores by electron probe X-ray microanalysis. J. Bacteriol. 112, 559–568 (1972)

    Google Scholar 

  • Shiina, S., Mizuhira, V., Amakawa, T., Futaesaku, Y.: An analysis of the histochemical procedure for sodium ion detection. J. Histochem. 18, 644–649 (1970)

    Google Scholar 

  • Shimony, C., Fahn, A., Reinhold, L.: Ultrastructure and ion gradients in the salt glands of Avicennia marina (Forskk) Vierh. New Phytol. 72, 27–36 (1973)

    Google Scholar 

  • Simson, J.A.V., Spicer, S.S.: Selective subcellular localization of precipitate using modifications of Komnick's pyroantimonate osmium technique. J. Histochem. Cytochem. 22, 291–292 (1974)

    Google Scholar 

  • Simson, J.A.V., Spicer, S.S.: Selective subcellular localization of cations with variants of the potassium (pyro) antimonate technique. J. Histochem. Cytochem. 23, 575–598 (1975)

    Google Scholar 

  • Sitte, P.: Einfaches Verfahren zur stufenlosen Gewebe-Entwasserung für die elektronenmikroskopische Präparation. Naturwissenschaften 49, 402–403 (1962)

    Google Scholar 

  • Spicer, S.S., Hardin, J.H., Greene, W.B.: Nuclear precipitates in pyroantimonate-osmium tetroxide fixed tissues. J. Cell Biol. 39, 216–221 (1960)

    Google Scholar 

  • Spicer, S.S., Swanson, A.A.: Elemental analysis of precipitates formed in nuclei by antimonate-osmium fixation. J. Histochem. Cytochem. 20, 518–526 (1972)

    Google Scholar 

  • Spurr, A.R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)

    Google Scholar 

  • Stoeckel, M.E., Hinderlang-Gertner, C., Dellman, H.D., Porte, A., Stutinsky, F.: Subcellular localization of calcium in the mouse hypophysis. Cell Tissue Res. 157, 307–322 (1975)

    Google Scholar 

  • Sumi, S.M.: Variations in the location and size of pyroantimonate precipitates in the immature rat cerebral cortex. J. Histochem. Cytochem. 19, 591–604 (1971)

    Google Scholar 

  • Sumi, S.M., Swanson, P.D.: Limitations of the pyroantimonate technique for localization of sodium in isolated cerebral tissues. J. Histochem. Cytochem. 19, 605–610 (1971)

    Google Scholar 

  • Tandler, C.J., Kierszenbaum, A.L.: Inorganic cations in rat kidney. Localization with potassium pyroantimonate perfusion fixation. J. Cell Biol. 50, 830–840 (1971)

    Google Scholar 

  • Tandler, C.J., Libanati, C.M., Sanchis, C.A.: The intracellular localization of inorganic cations with potassium pyroantimonate. J. Cell Biol. 45, 355–366 (1970)

    Google Scholar 

  • Tani, E., Ametani, T., Handa, H.: Sodium localization in the adult brain. I Normal brain tissue. Acta Neuropathol. 14, 137–150 (1969)

    Google Scholar 

  • Tice, L.W., Engel, A.G.: The localization of sodium pyroantimonate in frog muscle. J. Cell Biol. 31, 118 A (1966)

    Google Scholar 

  • Tisher, C.C., Cirksena, W.J., Arstila, A.U., Trump, B.F.: Subcellular localization of sodium in normal and injured proximal tubules of rat kidney. Am. J. Pathol. 57, 231–251 (1969)

    Google Scholar 

  • Tisher, C.C., Weavers, B.A., Cirksena, W.J.: X-ray microanalysis of pyroantimonate complexes in rat kidney. Am. J. Pathol. 69, 255–270 (1972)

    Google Scholar 

  • Torack, R.M., La Valle, M.: The specificity of the pyroantimonate technique to demonstrate sodium. J. Histochem. Cytochem. 18, 635–643 (1970)

    Google Scholar 

  • Van Iren, F., Van der Spiegel, A.: Subcellular localization of inorganic ions in plant cells by in vivo precipitation. Science 187, 1210–1211 (1975)

    Google Scholar 

  • Van Iren, F., Bange, G.G.J.: Localization of inorganic ions by precipitative freeze dissolution. Histochemistry 55, 81–96 (1978)

    Google Scholar 

  • Van Steveninck, M.E., Van Steveninck, R.F.M., Peters, P.D., Hall, T.A.: X-ray microanalysis of antimonate precipitates in barley roots. Protoplasma 90, 47–63 (1976)

    Google Scholar 

  • Weavers, B.A.: Combined transmission electron microscopy and X-ray microanalysis of ultrathin frozen dried sections, and investigation to determine the normal elemental composition of mammalian tissue. J. Microsc. 97, 331–341 (1973)

    Google Scholar 

  • Winborn, W.B., Girard, Ch.M., Seelig Jr., L.L.: Ultrastructural localization of antimonate deposits in the gastric mucosa. Cytobiology 6, 131–149 (1972)

    Google Scholar 

  • Wooding, F.B.P., Morgan, G.: Calcium localization in lactating rabbit mammary secretory cells. J. Ultrastr. Res. 63, 323–333 (1970)

    Google Scholar 

  • Yarom, R., Hall, T.A., Peters, P.D.: Calcium in myonuclei: electron probe X-ray analysis. Experientia 31, 154–157 (1975)

    Google Scholar 

  • Yarom, R., Meiri, U.: Pyroantimonate precipitates in frog skeletal muscle. Changes produced by alterations in composition of bathing fluid. J. Histochem. Cytochem. 21, 146–154 (1973)

    Google Scholar 

  • Yeh, B.K.: Localization of calcium antimonate in the atrial and ventricular muscle fibers of the cat heart. J. Mol. Cell Cardiol. 5, 351–358 (1973)

    Google Scholar 

  • Yeh, B.K., Hoffman, B.F.: The localization of antimonate-precipitable cation in cardiac muscle fibers. Fed. Proc. 26, 382 (1967)

    Google Scholar 

  • Zadunaisky, J.A.: The localization of sodium in the transverse tubules of skeletal muscle. J. Cell Biol. 31, C11-C16 (1966)

    Google Scholar 

  • Zadunaisky, J.A., Gennaro, J.F., Bashirelahi, N., Hilton, M.: Intracellular redistribution of sodium and calcium during stimulation of sodium transport in epithelial cells. J. Gen. Physiol. 51, 290S-302S (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Iren, F., Van Essen-Joolen, L., Van der Duyn Schouten, P. et al. Sodium and calcium localization in cells and tissues by precipitation with antimonate: A quantitative study. Histochemistry 63, 273–294 (1979). https://doi.org/10.1007/BF00490056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00490056

Keywords

Navigation