, Volume 89, Issue 2, pp 201–207 | Cite as

Immunohistochemical localization of gastrin-cholecystokinin-like material in the central nervous system of the migratory locust

  • M. Tamarelle
  • M. Romeuf
  • J. J. Vanderhaeghen


Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s))-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunore-active arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia.

This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.


Larval Instar Cholecystokinin Nerve Cord Fuchsin Ventral Nerve Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coons AH, Leduc EH, Connoly JM (1955) Studies on antibody production. I. Method for the histochemical demonstration of specific antibody and its application to the study of the hyper-immune rabbit. J Exp Med 102:49–59Google Scholar
  2. Dhainaut-Courtois N, Tramu G, Marcel R, Malecha J, Verger-Bocquet M, Andries JC, Masson M, Selloun L, Bellemtougri G, Beauvillain JC (1984) Cholecystokinin in the nervous systems of invertebrates and protochordates immunohistochemical localization of a cholecystokinin-S-like substance in annelids and insects. In: Vanderhaeghen JJ (ed) Neuronal cholecystokinin. Ann NY Acad Sci 448:167–187Google Scholar
  3. Dockray GJ (1976) Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 264:568–570Google Scholar
  4. Dockray GJ, Gregory RA, Hutchison JB, Harris JI, Runswick MJ (1978) Isolation, structure and biological activity of two cholecystokinin octapeptides from sheep brain. Nature 274:711–713Google Scholar
  5. Dockray GJ, Duve H, Thorpe A (1981) Immunochemical charactization of gastrin/cholecystokinin-like peptides in the brain of the blowfly Calliphora vomitoria. Gen Comp Endocrinol 45:491–496Google Scholar
  6. Duve H, Thorpe A (1981) Gastrin/cholecystokinin (CCK)-like immunoreactive neurons in the brain of the blowfly. Calliphora crythrocephala (Diptera). Gen Comp Endocrinol 43:381–391Google Scholar
  7. Duve H, Thorpe A (1984) Immunocytochemical mapping of gastrin/CCK-like peptides in the neuroendocrine system of the blowfly Calliphora vomitoria (Diptera) Cell Tissue Res 237:309–320Google Scholar
  8. Duve H, Thorpe A, Strausfeld J (1983) Cobalt-immunocytochemical identification of peptidergic neurons in Calliphora innervating central and peripheral targets. J Neurocytol 12:847–861Google Scholar
  9. El-Salhy M, Abou-El-Ela R, Falkmer S, Grimelins L, Wilander E (1980) Immunohistochemical evidence of gastro-entero-pancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Eristalis aenus. Regul Pept A: 187–204Google Scholar
  10. Fujita TR, Yui T, Iwanaga J, Nishiitsutsuji-Uwo J, Endo Y, Yanaihara N (1981) Evolutionary aspects of “brain-gut peptides”. An immunohistochemical study. Peptides 2 (Suppl 2):123–131Google Scholar
  11. Gall C, Lauterborn J, Burks D, Seroogy K (1987) Co-localization of enkephalin and cholecystokinin in discrete areas of rat brain. Brain Res 403:403–408Google Scholar
  12. Ganagarajah M, Saleuddin ASM (1970) A simple manoeuvre to prevent loss of sections for performic acid-Victoria blue technique and a comparison of various neurosecretory stains. Can J Zool 48:1457–1458Google Scholar
  13. Girardie J, Rossi C (1978) Preuves histologiques et ultrastructurates de 2 catégories de cellules neurosécrétrices protocérébrales médianes de type A chez le criquet migrateur. CR Acad Sci Paris 286:97–100Google Scholar
  14. Girardie A, Girardie J, Proux J, Rémy C, Vieillemaringe J (1984) Neurosecretion in insects: multisynthesis, mode of action and multiregulation. In: Hoffmann J, Porchet M (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones. Springer, Berlin Heidelberg New York, pp 97–105Google Scholar
  15. Hansen GN, Hansen BL, Scharrer B (1987) Gastrin/CCK-like immunoreactivity in the corpus cardiacum-corpus allatum complex of the cokroach Leucophaea maderae. Cell Tissue Res 248:595–598Google Scholar
  16. Larson BA, Vigna SR (1983) Species and tissue distribution of cholecystokinin/gastrin-like substances in some invertebrates. Gen Comp Endocrinol 50:469–475Google Scholar
  17. Larsson LI (1985) Differential changes in calcitonin, somatostatin and gastrin/cholecystokinin-like immunoreactivities in rat thyroid parafollicular cells during ontogeny. Histochemistry 82:121–130Google Scholar
  18. Larson LI, Rehfeld JF (1978) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218Google Scholar
  19. Lotstra F, Vanderhaeghen JJ (1984) Possible misinterpretations of radioimmunoassay results of endocrine tissues containing peptides in the micromolar range. Med Biol 62:59–63Google Scholar
  20. Martin R, Geis R, Holl R, Schäfer M, Voigt KH (1983) Co-existence of un-related peptides in oxytocin and vasopressin terminals of rat neuro-hypophyses: immunoreactive methionine-enkephalin-, leukine-enkephalin-and cholecystokinin-like substances. Neuroscience 8:213–227Google Scholar
  21. Nachman RJ, Holman MG, Haddon WF, Ling N (1986a) Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234:71–73Google Scholar
  22. Nachman RJ, Holman GM, Cook BJ, Haddon WF, Ling N (1986b) Leucosulfakinin II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem Biophys Res Commun 140, 1:357–364Google Scholar
  23. Poras M (1983) L'innervation protocérébrale des corps allates chez Locusta migratoria (Orthoptères) CR Acad Sci Paris 297:483–488Google Scholar
  24. Rehfeld JF (1981) Four basic characteristics of the gastrin-cholecystokinin system. Am J Physiol 240 (Gastrointest Liver Physiol 3): G255-G266Google Scholar
  25. Rémy C (1984) Immunochemical relationships between vertebrate and invertebrate neuropeptides. Nova Acta Leopoldina NF 255:99–116Google Scholar
  26. Rémy C, Dubois MP (1981) Immunohistological evidence of methionine enkephalin-like material in the brain of the migratory locust. Cell Tissue Res 218:271–278Google Scholar
  27. Rémy C, Girardie J (1980) Anatomical organization of two vasopressin-neurophysin-like neurosecretory cells throughout the central nervous system of the migratory locust. Gen Comp Endocrinol 40:27–35Google Scholar
  28. Rémy C, Girardie J, Dubois MP (1979) Vertebrates neuropeptidelike substances in the suboesophageal ganglion of two insects: Locusta migratoria R. et F. (Orthoptera) and Bombyx mori L. (Lepidoptera). Immunocytological investigation. Gen Comp Endocrinol 37:93–100Google Scholar
  29. Robbrecht P, Descholdt-Lauckman M, Vanderhaeghen JJ (1978) Demonstration of biological activity of brain gastrin-like peptidic material in the human: its relationship with the COOH-terminal octapeptide of cholecystokinin. Proc Natl Acad Sci USA 75:524–528Google Scholar
  30. Romeuf M, Rémy C (1984) Early immunohistochemical detection of somatostatin-like and methionine-enkephalin-like neuropeptides of the migratory locust embryo. Cell Tissue Res 236:289–292Google Scholar
  31. Sternberger LA (1974) Immunocytochemistry. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  32. Vanderhaeghen JJ, Signeau JC, Gepts W (1975) New peptide in the vertebrate CNS reacting with anti-gastrin antibodies. Nature 257:604–605Google Scholar
  33. Vanderhaeghen JJ, Lotstra F, De Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin and gastrin-like peptide in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77:1190–1194Google Scholar
  34. Vigna SR (1985) Cholecystokinin and its receptors in vertebrates and invertebrates. Peptides 6:283–287Google Scholar
  35. Yui R, Fujita RT, Ito S (1980) Insulin-, gastrin-, pancreatic polypeptide-like immunoreactive neurons in the brain of the silkworm, Bombyx mori. Biomed Res 1:41–46Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Tamarelle
    • 1
  • M. Romeuf
    • 1
  • J. J. Vanderhaeghen
    • 2
  1. 1.Laboratoire de NeuroendocrinologieUniversité de Bordeaux I, CNRS UA 1138Talence CedexFrance
  2. 2.Laboratoire de Neuropathologie et de Recherche sur les Peptides du Système NerveuxUniversité Libre de Bruxelles, Faculté de MédecineBruxellesBelgique

Personalised recommendations