Skip to main content
Log in

Study of the electron interactions of polysubstituted azoles by PMR and IR spectroscopy

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

The IR and PMR spectra of an extensive series of methyl derivatives of aromatic and heteroaromatic compounds were investigated. With a few exceptions, the experimental data on the chemical shifts of the protons \((\delta ^{{\text{CH}}_{\text{3}} } )\) and the intensity of the band of the symmetrical stretching vibration [(ACH)1/2] for five- and six-membered heterorings can be united in a single reaction series with polysubstituted toluenes within the framework of an additive scheme. The (ACH)1/2 values correlate satisfactorily with the calculated (by the CNDO/2 method) total charges on the carbon and hydrogen atoms of the methyl group. In contrast to the intensities of the IR bands, linear relationships between the chemical shifts and the charges on the hydrogen atoms are observed only within the limits of particular reaction series. The lack of a unified relationship was interpreted as being the result of the effect of the ring current, the contribution of which to the \((\delta ^{{\text{CH}}_{\text{3}} } )\) value depends on the nature of the heteroatom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. N. Zatsepina, I. F. Tupitsyn, and A. V. Kirova, Reakts. Sposobn. Org. Soedin., 9, 195 (1972).

    Google Scholar 

  2. I. F. Tupitsyn, N. N. Zatsepina, A. V. Kirova, and N. S. Kolodina, Reakts. Sposobn. Org. Soedin., 9, 207 (1972).

    Google Scholar 

  3. L. M. Jackman and S. Sternhell, Applications of NMR Spectroscopy in Organic Chemistry, Pergamon Press, New York (1969).

    Google Scholar 

  4. A. F. Cockerill, D. M. Rackham, and N. C. Franklin, J. Chem. Soc., Perkin II, No. 5, 509 (1973).

    Google Scholar 

  5. J. P. Morizer, Y. Pascal, and F. Vernier, Bull. Soc. Chim. France, No. 7, 2296 (1966).

    Google Scholar 

  6. S. Gronowitz and B. Gestblom. Arkiv Kemi. 18, 513 (1962).

    Google Scholar 

  7. J. Elguero, R. Jacquier, and H. C. N. Tien Duc, Bull. Soc. Chim. France, No. 12, 3727 (1966).

    Google Scholar 

  8. C. L. Habraken, H. J. Munter, and J. C. P. Westgeest, Rec. Trav. Chim., 86, 56 (1967).

    Google Scholar 

  9. D. N. Kravtsov, L. A. Fedorov, A. S. Peregudov, and A. N. Nesmeyanov, Dokl. Akad. Nauk SSSR, 196, 111 (1971).

    Google Scholar 

  10. J. H. Bowie, R. F. Donaghue, and H. J. Rodda, J. Chem. Soc., B, No. 9, 1122 (1969).

    Google Scholar 

  11. S. D. Sokolov, I. M. Yudintseva, and P. V. Petrovskii, Zh. Org. Khim., 6, 2584 (1970).

    Google Scholar 

  12. E. J. Vincent, R. Phan-Tan-Luu, J. Metzger, and J. M. Surzur, Bull. Soc. Chim. France, No. 11, 3524 (1966).

    Google Scholar 

  13. H. J. M. Dou, A. Friedmann, G. Vernin, and J. Metzger, Compt. Rend., C, 266, 714 (1968).

    Google Scholar 

  14. C. Richard and J. Anderson, J. Heterocycl. Chem., 1, 279 (1964).

    Google Scholar 

  15. H. Staab and A. Mannschreck, Chem. Ber., 98, 1111 (1965).

    Google Scholar 

  16. A. Perichand, J. C. Poite, and G. Mille, Bull. Soc. Chim. France, No. 10, 3830 (1972).

    Google Scholar 

  17. H. Markgraf and W. T. Bachmann, J. Org. Chem., 30, 3472 (1965).

    Google Scholar 

  18. L. A. Lee and J. W. Wheeler, J. Org. Chem., 37, 348 (1972).

    Google Scholar 

  19. R. E. Wasylishen, J. Rowbotham, J. Brian, and T. Schaefer, Can. J. Chem., 52, 833 (1974).

    Google Scholar 

  20. H. H. Jaffe and H. L. Jones, Advances in Heterocyclic Chemistry, Vol. 3 (1964), p. 209.

    Google Scholar 

  21. I. F. Tupitsyn, N. N. Zatsepina, N. S. Kolodina, and A. A. Kane, Reakts. Sposobn. Org. Soedin., 5, 931 (1968).

    Google Scholar 

  22. N. N. Zatsepina, I. F. Tupitsyn, Yu. L. Kaminskii, and N. S. Kolodina, Reakts. Sposobn. Org. Soedin., 6, 766 (1969).

    Google Scholar 

  23. G. Segal and M. Klein, J. Chem. Phys., 47, 4236 (1967).

    Google Scholar 

  24. R. Bruns, J. Chem. Phys., 58, 1849, 2585 (1973).

    Google Scholar 

  25. T. P. Lewis and I. W. Levin, Theor. Chim. Acta, 19, 55 (1970).

    Google Scholar 

  26. I. W. Levin, J. Chem. Phys., 55, 5393 (1971).

    Google Scholar 

  27. R. T. C. Brownlee, A. R. Katritzky, M. V. Sinnot, M. Szafran, R. D. Topsom, and L. Yakhontov, J. Am. Chem. Soc., 92, 6850 (1970).

    Google Scholar 

  28. R. T. C. Brownlee, J. A. Munday, R. D. Topsom, and A. R. Katritzky, J. Chem. Soc., Faraday II, No. 3, 349 (1973).

    Google Scholar 

  29. R. T. C. Brownlee, D. G. Cameron, R. D. Topsom, A. R. Katritzky, and A. J. Sparrow, J. Mol. Struct., 16, 365 (1973).

    Google Scholar 

  30. U. Pouchan, A. Dargelos, G, Ford, R. D. Topsom, and A. R. Katritzky, J. Chim. Phys., Phys.-Chim. Biol., 71, 934 (1974).

    Google Scholar 

  31. T. B. Grindley, K. F. Johnson, A. R. Katritzky, H. J. Keogh, C. Thirkettle, R. T. C. Brownlee, J. A. Munday, and R. D. Topsom, J. Chem. Soc., Perkin II, No. 3, 276 (1974).

    Google Scholar 

  32. B. Bäk, D. Christensen, Z. H. Hygeard, and J. R. Andersen, J. Mol. Spectr., 7, 58 (1961).

    Google Scholar 

  33. B. Bäk, D. Christensen, and W. Dixon, J. Mol. Spectr., 9, 124 (1962).

    Google Scholar 

  34. F. K. Larsen, M. S. Lehmann, J. Sotofte, and S. E. Rasmussen, Acta Chem. Scand., 24, 3248 (1970).

    Google Scholar 

  35. J. Berthon, J. Elguero, and C. Rerat, Acta Cryst., B, 26, 1820 (1970).

    Google Scholar 

  36. K. Bolton, R. D. Brown, F. R. Burden, and A. Mishra, J. Mol. Struct., 27, 261 (1975).

    Google Scholar 

  37. F. A. Momany and R. A. Bonham, J. Am. Chem. Soc., 86, 162 (1964).

    Google Scholar 

  38. Z. Nygaard, E. Asmussen, J. H. Hog, R. C. Maheshwari, C. H. Nielsen, U. B. Petersen, J. Rastrup-Andersen, and G. O. Sorensen, J. Mol. Struct., 8, 225 (1971).

    Google Scholar 

  39. J. Ambats and R. E. Marsh, Acta Cryst., 19, 942 (1965).

    Google Scholar 

  40. R. Michel, Frank D'Amato, and B. Marc, J. Mol. Struct., 9, 183 (1971).

    Google Scholar 

  41. J. A. Pople and M. Gordon, J. Am. Chem. Soc., 89, 4253 (1967).

    Google Scholar 

  42. J. Niwa, Bull. Chem. Soc. Jpn., 48, 118 (1975).

    Google Scholar 

  43. D. A. Dowson, G. K. Hamer, and W. F. Reynolds, Can. J. Chem., 52, 41 (1974).

    Google Scholar 

  44. G. Barbieri, R. Benassi, P. Lazzeretti, L. Schenetti, and F. Taddei, Org. Magn. Res., 7, 451 (1975).

    Google Scholar 

  45. J. A. Eldvice and L. M. Jackman, J. Chem. Soc., No. 7, 859 (1961).

    Google Scholar 

  46. F. Fringuelli, G. Marino, A. Tatiechi, and G. Grandolini, J. Chem. Soc., Perkin II, No. 4, 332 (1974).

    Google Scholar 

  47. S. Clementi, P. P. Forsythe, C. D. Johnson, A. R. Katritzky, and B. Terem, J. Chem. Soc., Perkin II, No. 4, 399 (1974).

    Google Scholar 

  48. Zh. F. Labarr and F. Galla, Usp. Khim., 40, 654 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1110–1119, August, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zatsepina, N.N., Tupitsyn, I.F., Belyashova, A.I. et al. Study of the electron interactions of polysubstituted azoles by PMR and IR spectroscopy. Chem Heterocycl Compd 13, 894–903 (1977). https://doi.org/10.1007/BF00488919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00488919

Keywords

Navigation