Advertisement

Biochemical Genetics

, Volume 21, Issue 11–12, pp 1153–1166 | Cite as

Comparative properties of three forms of glucose-6-phosphate dehydrogenase in Drosophila melanogaster

  • John H. Williamson
  • Michael M. Bentley
Article

Abstract

Three alleles of the Zw locus of Drosophila melanogaster—ZwA, ZwB,and Zwlol—apparently code for dimeric, tetrameric, and monomeric forms of glucose-6-phosphate dehydrogenase (G6PD), respectively. The three forms of G6PD are characterized by different apparent Kmvalues for glucose-6-phosphate but similar apparent Kmvalues for NAPD+. When high concentrations of NAPD+ were added to enzyme preparations, the ZwAand Zwlolforms of G6PD assumed tetrameric and dimeric properties, respectively. Although Zwloladults exhibit little G6PD activity, they maintain levels of G6PD-antigen comparable to those in ZwAand ZwBadults. Thus the low level of G6PD activity in Zwlolindividuals cannot be explained as the consequence of lack of synthesis of the G6PD subunit.

Key words

Drosophila melanogaster glucose-6-phosphate dehydrogenase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, M. M., Williamson, J. H., and Oliver, M. J. (1981). The effects of molybdate, tungstate and lxd on aldehyde oxidase and xanthine dehydrogenase in Drosophila melanogaster. Can. J. Genet. Cytol. 23597.Google Scholar
  2. Bijlsma, R., and van der Meulen-Bruijns, C. (1979). Polymorphism at the G6PD and 6PGD loci in Drosophila melanogaster. III. Developmental and biochemical aspects. Biochem. Genet. 171131.Google Scholar
  3. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72248.Google Scholar
  4. Browder, L. W., and Williamson, J. H. (1976). The effects of cinnamon on xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase activity during development in Drosophila melanogaster. Dev. Biol. 53241.Google Scholar
  5. Cochrane, B. J., and Lucchesi, J. C. (1980). Genetic variation in the effects of dietary sucrose on G6PD and 6PGD in Drosophila melanogaster larvae. Genetics 94:s20.Google Scholar
  6. Fadda, S., Sangiorgi, S., and Pieragostini, E. (1979). Developmental G6PD polymorphism in Drosophila melanogaster: Evidence for nonstructural variants. Experientia 351441.Google Scholar
  7. Geer, B. W., Bowman, J. T., and Simmons, J. R. (1974). The pentose shunt in wild-type and glucose-6-phosphate dehydrogenase deficient Drosophila melanogaster. J. Exp. Zool. 18777.Google Scholar
  8. Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A., and Yemm, S. J. (1976a). Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. I. Modulation by carbohydrate and lipid. J. Exp. Zool. 19515.Google Scholar
  9. Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A., and Yemm, S. J. (1976b). Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. II. The biochemical basis of dietary carbohydrate and D-glycerate modulation. J. Exp. Zool. 203391.Google Scholar
  10. Geer, B. W., Krochko, D., and Williamson, J. H. (1979). Ontogeny, cell distribution and the physiological role of NADP-malic enzyme in Drosophila melanogaster. Biochem. Genet. 17867.Google Scholar
  11. Geer, B. W., Lindel, D. L., and Lindel, D. M. (1979). Relationship of the oxidative pentose shunt pathway to lipid synthesis in Drosophila melanogaster. Biochem. Genet. 17881.Google Scholar
  12. Geer, B. W., Williamson, J. H., Cavener, D. R., and Cochrane, B. J. (1981). Dietary modulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenase in Drosophila. In Bhaskaran, G., Friedman, S., and Rodriguez, J. G. (eds.), Current Topics in Insect Endocrinology and Nutrition Plenum, New York, pp. 253–281.Google Scholar
  13. Giesel, J. T. (1976). Biology of a duplicate gene system with glucose-6-phosphate dehydrogenase activity in Drosophila melanogaster: Genetic analysis and differences in fitness components and reaction to environmental parameters among Zw genotypes. Biochem. Genet. 14823.Google Scholar
  14. Greenbaum, A. L., Gumaa, K. A., and McLean, P. (1971). The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch. Biochem. Biophys. 143617.Google Scholar
  15. Hori, S. H., and Tanda, S. (1980). Purification and properties of wild-type and mutant glucose-6-phosphate dehydrogenases and 6-phosphogluconate dehydrogenase from Drosophila melanogaster. Jap. J. Genet. 55211.Google Scholar
  16. Hori, S. H., and Tanda, S. (1981). Genetic variations in the activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in Drosophila melanogaster. Evidence for an autosomal modifier system. Jap. J. Genet. 56257.Google Scholar
  17. Huggins, G., and Yao, F. (1959). Influence of hormones on liver. I. Effects of steroids and thyroxine on pyridine nycleotide linked dehydrogenases. J. Exp. Med. 110899.Google Scholar
  18. Kanungo, M. S., and Prosser, C. L. (1959). Physiological and biochemical adaption of goldfish to cold and warm temperatures. II. Oxygen consumption of liver homogenates and oxidative phosphorylation of liver mitochondria. J. Cell. Comp. Physiol. 54265.Google Scholar
  19. Laurell, C. B. (1966). Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 1545.Google Scholar
  20. Laurie-Ahlberg, C. C., Maroni, G., Bewley, G. C., Luccnesi, J. C., and Weir, B. S. (1980). Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 771073.Google Scholar
  21. Laurie-Ahlberg, C. C., Williamson, J. H., Cochrane, B. J., Wilton, A. N., and Chasalow, F. I. (1981). Autosomal factors with correlated effects on the activities of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases in Drosophila melanogaster. Genetics 99127.Google Scholar
  22. Lee, C.-Y., Langley, C. H., and Burkhart, J. (1978). Purification and molecular weight determination of glucose-6-phosphate dehydrogenase and malic enzyme from mouse and Drosophila. Anal. Biochem. 86697.Google Scholar
  23. Levy, H. R. (1979). Glucose-6-phosphate dehydrogenases. Adv. Enzymol. 4897.Google Scholar
  24. Lewis, D. B. (1960). A new standard food medium. Dros. Inform. Serv. 34117.Google Scholar
  25. Lindsley, D. L., and Grell, E. H. (1968). Genetic variation of Drosophila melanogaster. Carnegie Inst. Washington, Publ. No. 627.Google Scholar
  26. Lucchesi, J. C. (1978). Gene dosage compensation and the evolution of sex chromosomes. Science 101711.Google Scholar
  27. Lucchesi, J. C., Hughes, M. B., and Geer, B. W. (1979). Genetic control of pentose phosphate pathway enzymes in Drosophila. Curr. Topics Cell. Reg. 15143.Google Scholar
  28. Meidinger, E. M., and Williamson J. H. (1978). Genetic control of aldehyde oxidase activity and cross-reacting-material in Drosophila melanogaster. Can. J. Genet. Cytol. 20489.Google Scholar
  29. Pieragostini, E., Vanelli, M. L., Sangiorgi, S., and Palenzona, D. (1978). Glucose-6-phosphate dehydrogenase in Drosophila melanogaster: Autosomal determination and relationship to vg marker. Dros. Inform. Serv. 53189.Google Scholar
  30. Steele, M. W., Young, W. J., and Childs, B. (1968). Glucose-6-phosphate dehydrogenase in Drosophila melanogaster: Starch gel electrophoretic variation due to molecular instability. Biochem. Genet. 2159.Google Scholar
  31. Steele, M. W., Young, W. J., and Childs, B. (1969). Genetic regulation of glucose-6-phosphate dehydrogenase activity in Drosophila melanogaster. Biochem. Genet. 3359.Google Scholar
  32. Stewart, B. R., and Merriam, J. R. (1974). Segmental aneuploidy and enzyme activity as a method for cytogenetic localization in Drosophila melanogaster. Genetics 76301.Google Scholar
  33. Veeger, C., Der Vartanian, D. V., and Zeylemaker, W. P. (1969). Succinate dehydrogenase. In Lowenstein, J. M. (ed.), Methods in Enzymology, Vol. 8 Academic Press, New York, pp. 81–90.Google Scholar
  34. Voelker, R. A., Langley, C. H., Leigh-Brown, A. J., Ohnishi, S., Dickson, B., Montgomery, E., and Smith, S. C., (1980). Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population. Proc. Natl. Acad. Sci. USA 771091.Google Scholar
  35. Williamson, J. H., and Bentley, M. M., (1981). Dosage compensation in Drosophila melanogaster as illustrated by glucose 6-phosphate (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) specific activities and CRM levels. Genetics 97:s113.Google Scholar
  36. Williamson, J. H., and Bentley, M. M. (1983). Dosage compensation in Drosophila: NADP-enzyme activities and cross-reacting material. Genetics 103649.Google Scholar
  37. Young, W. J., Porter, J. E., and Childs, B. (1964). Glucose-6-phosphate dehydrogense in Drosophila. X-linked electrophoretic variants. Science 143 140.Google Scholar
  38. Yugari, Y., and Matsuda, T., (1967). Glucose-6-phosphate dehydrogenase from rat liver II. Effect of diet on enzyme activity in vivo and inhibition by long chain fatty acids in vitro. J. Biochem. 61541.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • John H. Williamson
    • 1
  • Michael M. Bentley
    • 2
  1. 1.Department of BiologyDavidson CollegeDavidson
  2. 2.Department of BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations