Advertisement

Fresenius' Zeitschrift für analytische Chemie

, Volume 329, Issue 5, pp 539–545 | Cite as

Multielement-preconcentration for atomic spectroscopy by sorption of dithiocarbamate-metal complexes (e.g., HMDC) on cellulose collectors

  • P. Burba
  • P. G. Willmer
Original Papers Atomic Spectroscopy Methods

Summary

The analytical preconcentration of trace metals from saline solutions by sorption of their dithiocarbamates on ‘reversed-phase’ cellulose is reported. Heavy metals [e.g., Bi, Cd, Co, Cr(III), Cu, Fe, Hg, In, Ni, Pb, Tl, Yb, Zn] dissolved at the ng/l to μg/l level can be quantitatively fixed as dithiocarbamates (e.g., HMDC) on cellulose within a few minutes. In salt solutions and without use of any carriermetal the distribution coefficients Kd are of the order 104 to 105 (ml/g) in the pH range between 4 and 10. The Kd values of dithiocarbamates on RP cellulose (e.g., acetylated cellulose) are higher by a factor of 5 to 10 than those on conventional RP sorbents (e.g., C18, C6H5). Moreover, the chemical blanks caused by the cellulose collector (batch and column procedure) are below the detection limits of the determination methods used (flame-AAS, graphite furnace-AAS, ICP-OES), Cu, Fe and Zn excepted. Combined with the above atomic spectroscopy methods, the multielement preconcentration with the aid of HMDC complexes is applied to the determination of trace metals in natural waters (including sea water), biological matters (e.g., urine, bovine liver) and high-purity metals (e.g., Al). The accuracy and precision of the developed analytical procedure are confirmed by trace determinations in standard reference materials (e.g., NBS 1577, Alusuisse 112/02).

Keywords

Cellulose Trace Metal Distribution Coefficient Standard Reference Material Spectroscopy Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Multielement-Voranreicherung für die Atomspektroskopie durch Sorption von Dithiocarbamat-Metallkomplexen an Cellulose-Kollektoren

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mizuike A (1983) Enrichment techniques for inorganic trace analysis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Cresser MS (1978) Solvent extraction in flame spectroscopic analysis. Butterworth, London BostonGoogle Scholar
  3. 3.
    Ebdon L, Cresser MS, McLeod CM (1987) J Anal Atom Spectrosc 2:1 RGoogle Scholar
  4. 4.
    Myasoedova GV, Savvin SB (1986) CRC Crit Rev Anal Chem 17:1–64Google Scholar
  5. 5.
    Bächmann K (1981) CRC Crit Rev Anal Chem 12:1–67Google Scholar
  6. 6.
    Mizuike A (1983) Enrichment techniques for inorganic trace analysis. Springer, Berlin Heidelberg New York, pp 61–66Google Scholar
  7. 7.
    Burba P, Willmer PG (1985) Fresenius Z Anal Chem 321:109Google Scholar
  8. 8.
    Berndt H, Harms U, Sonneborn M (1985) Fresenius Z Anal Chem 322:329Google Scholar
  9. 9.
    Jackwerth E, Messerschmidt J (1978) Anal Chim Acta 107:177Google Scholar
  10. 10.
    Sturgeon RE, Berman SS, Wilee SN (1981) Talanta 29:167Google Scholar
  11. 11.
    Irth H, de Jong GJ, Brinkman UATh, Frei RW (1987) Anal Chem 59:98Google Scholar
  12. 12.
    Koch OG, Koch-Dedic GA (1974) Handbuch der Spurenanalyse, Teil 1. Springer, Berlin Heidelberg New York, p 308Google Scholar
  13. 13.
    Stössel RP, Prange A (1985) Anal Chem 57:2880Google Scholar
  14. 14.
    Berndt H, Jackwerth E (1979) Fresenius Z Anal Chem 290:369Google Scholar
  15. 15.
    Heuss E, Lieser KH (1979) J Radioanal Chem 50:289Google Scholar
  16. 16.
    Knapp G, Schreiber B, Frei RW (1975) Anal Chim Acta 77:293Google Scholar
  17. 17.
    Prange A, Knöchel A, Michaelis W (1985) Anal Chim Acta 172:79Google Scholar
  18. 18.
    Burba P, Willmer PG (1986) Fresenius Z Anal Chem 323:811Google Scholar
  19. 19.
    Wegschneider W, Knapp G (1981) CRC Crit Rev Anal Chem 11:79–102Google Scholar
  20. 20.
    Watanabe H, Goto K, Taguchi S, McLaren JW, Berman SS (1981) Anal Chem 53:738Google Scholar
  21. 21.
    Guthrie JD, Bullock AL (1960) Ind Eng Chem 52:935Google Scholar
  22. 22.
    Tschöpel P, Kotz L, Schulz W, Veber M, Tölg G (1980) Fresenius Z Anal Chem 302:1Google Scholar
  23. 23.
    Burba P, Willmer PG (1982) Fresenius Z Anal Chem 311:222Google Scholar
  24. 24.
    Berndt H, Baasner J, Messerschmidt J (1986) Anal Chim Acta 180:389Google Scholar
  25. 25.
    Knapp G, Raptis SE, Kaiser G, Tölg G (1981) Fresenius Z Anal Chem 308:97Google Scholar
  26. 26.
    Berndt H, Jackwerth E (1976) At Absorpt Newsl 15:109Google Scholar
  27. 27.
    Burba P, Willmer PG (1982) Talanta 30:381Google Scholar
  28. 28.
    Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. 29.
    Iyengar GV, Kollmer WE, Bowen HJM (1978) The elemental composition of human tissues and body fluids. Verlag Chemie, Weinheim New YorkGoogle Scholar
  30. 30.
    Jackwerth E, Berndt H (1975) Anal Chim Acta 74:299Google Scholar
  31. 31.
    Burba P, Willmer PG (1985) Fresenius Z Anal Chem 322:266Google Scholar
  32. 32.
    Zaray G, Burba P, Broekaert JAC, Leis F (1987) Spectrochim Acta, in pressGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. Burba
    • 1
  • P. G. Willmer
    • 1
  1. 1.Institut für Spektrochemie und angewandte SpektroskopieDortmund 1Federal Republic of Germany

Personalised recommendations