Biochemical Genetics

, Volume 12, Issue 2, pp 163–180 | Cite as

RNA-bound reverse transcriptase in Escherichia coli and in vitro synthesis of a complementary DNA

  • Mirko Beljanski
  • Monique Beljanski


RNA-bound reverse transcriptase can be easily distinguished from RNA-free reverse transcriptase and DNA-dependent DNA polymerase after fractionation of extracts from Escherichia coli on a DEAE-cellulose column. This enzyme is capable of synthesizing a DNA-like product in the absence of exogenously added template provided that all four deoxyribonucleoside 5′-triphosphates are present in the incubation mixture. Removal of RNA from the enzyme by RNase leads to a considerably decreased polymerizing activity. The activity can be restored under appropriate conditions either by RNA originating from the enzyme or by transforming RNA excreted by showdomycin-resistant E. coli. Enzyme-bound RNA has several characteristics already found for the transforming RNA. DNA synthesized by RNA-bound reverse transcriptase is complementary to the enzyme-bound RNA.

Key words

reverse transcriptase RNA DNA Escherichia coli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aposhian, H. V., and Kornberg, A. (1962). Enzymatic synthesis of deoxyribonucleic acid. Polymerase formed after T2 bacteriophage infection of Escherichia coli: A new enzyme. J. Biol. Chem. 237519.Google Scholar
  2. Aulakh, G. S., Viola, M. V., and Dutta, S. K. (1973). RNA-dependent DNA polymerase in Neurospora crassa (personal communication).Google Scholar
  3. Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumors viruses. Nature (Lond.) 2261209.Google Scholar
  4. Beljanski, M. (1949). A propos du microdosage du ribose dans les acides nucléiques et leurs dérivés. Ann. Inst. Pasteur 76451.Google Scholar
  5. Beljanski, M. (1972). Synthese in vitro de l'ADN sur une matrice d'ARN par une transcriptase d'E coli. Compt. Rend. Acad. Sci. Paris (Ser. D) 2742801.Google Scholar
  6. Beljanski, M., and Manigault, P. (1972). Genetic transformation of bacteria by RNA and loss of oncogenic power properties of Agrobacterium tumefaciens: Transforming RNA as template for DNA synthesis. In Beers, R. F. Jr., and Tilghman, R. C. (eds.), Cellular Modification and Genetic Transformation by Exogenous Nucleic Acids, Johns Hopkins University Press, Baltimore, p. 81.Google Scholar
  7. Beljanski, M., and Plawecki, M. (1973). Transforming RNA as template directing RNA and DNA synthesis in bacteria. In Niu, M.C., and Segal, S. J., The Role of RNA in Reproduction and Development, North Holland Publishing Co., p.203.Google Scholar
  8. Beljanski, M., Beljanski, M., and Bourgarel, P. (1971a). Episome à ARN porté par l'ADN d'Escherichia coli sauvage et showdomycinoresistant. Compt. Rend. Acad. Sci. Paris (Ser. D) 2722736.Google Scholar
  9. Beljanski, M., Bourgarel, P., and Beljanski, M. (1971b). Drastic alteration of ribosomal proteins in showdomycin-resistant Escherichia coli. Proc. Natl. Acad. Sci. 68491.Google Scholar
  10. Beljanski, M., Beljanski, M., and Bourgarel, P. (1971c). ARN transformants porteurs de caractères héréditaires chez E. coli showdomycino-resistant. Compt. Rend. Acad. Sci. Paris (Ser. D) 2722167.Google Scholar
  11. Beljanski, M., Beljanski, M., Manigault, P., and Bourgarel, P. (1972). Transformation of Agrobacterium tumefaciens into a nononcogenic species by an Escherichia coli RNA. Proc. Natl. Acad. Sci. 69191.Google Scholar
  12. Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation and deoxyribonucleic acid. Biochem. J. 62315.Google Scholar
  13. Cavalieri, L. B., and Caroll, E. (1968). DNA polymerase: Evidence for multiple molecular species. Proc. Natl. Acad. Sci. 59951.Google Scholar
  14. Cavalieri, L. B., and Caroll, E. (1971). RNA-dependent DNA polymerase from E. coli and effect produced by traces of added DNA. Nature (Lond.) 232254.Google Scholar
  15. Duesberg, P., Helm, L. V. D., and Canaani, E. (1971). Comparative properties of RNA and DNA templates for the DNA polymerase of Rous sarcoma virus. Proc. Natl. Acad. Sci. 68747.Google Scholar
  16. Evans, A. H. (1964). Introduction of specific drug resistance properties by purified RNA containing fractions from pneumococcus. Proc. Natl. Acad. Sci. 521442.Google Scholar
  17. Faras, A. J., Taylor, J. M., McDonnell, J. P., Levinsons, W. E., and Bishop, J. M. (1972). Purification and characterization of the deoxyribonucleic acid polymerase associated with Rous sarcoma virus. Biochemistry 112334.Google Scholar
  18. Fridlander, B., Fry, M., Bolden, A., and Weissbach, A. (1972). A new synthetic RNA-dependent DNA polymerase from human tissue culture cells. Proc. Natl. Acad. Sci. 69452.Google Scholar
  19. Gallo, R. (1971). Reverse transcriptase, the DNA polymerase of oncogenic RNA viruses. Nature (Lond.) 234194.Google Scholar
  20. Gallo, R. C., Sarin, P. S., Mangalasseril, M. G., Smith, R. G., Bobrow, S. N., and Reitz, M. S. (1972). Biochemical properties of reverse transcriptase activities from human cells and RNA tumor viruses. In Beers, R. F., Jr., and Tilghman, R. C. (eds.), Cellular Modification and Genetic Transformation by Exogenous Nucleic Acids, Johns Hopkins University Press, Baltimore, p. 180.Google Scholar
  21. Gefter, M. L., Hirota, Y., Kornberg, T., Wechsler, J. A., and Barnoux, C. (1971). Analysis of DNA polymerase II and III in mutants of Escherichia coli thermosensitive for DNA synthesis. Proc. Natl. Acad. Sci. 683150.Google Scholar
  22. Grandgenett, D. P., Gerard, G. F., and Green, M. (1972). A single subunit from avian myeloblastosis virus with both RNA-directed DNA polymerase and ribonuclease H activity. Proc. Natl. Acad. Sci. 70230.Google Scholar
  23. Gulati, S. C., Axel, R., and Spiegelman, S. (1972). Detection of RNA-instructed DNA polymerase and high molecular weight in malignant tissue. Proc. Natl. Acad. Sci. 692020.Google Scholar
  24. Hurwitz, J., and Leis, J. P. (1972). RNA-dependent DNA polymerase activity of RNA tumor viruses. J. Virol. 9116.Google Scholar
  25. Kacian, D. L., Watson, K. F., Burny, A., and Spiegelman, S. (1971). Purification of the DNA polymerase of the avian myeloblastosis virus. Biochim. Biophys. Acta 246365.Google Scholar
  26. Kacian, D. L., Spiegelman, S., Bank, A., Terada, M., Metafora, S., Dow, S., and Marks, P.A. (1972). In vitro synthesis of DNA components of human genes for globins. Nature New Biol. 235167.Google Scholar
  27. Kang, C. Y., and Temin, H. M. (1972). Endogenous RNA-directed DNA polymerase activity in uninfected chicken embryos. Proc. Natl. Acad. Sci. 691550.Google Scholar
  28. Kang, C. Y., and Temin, H. M. (1973). An early DNA-RNA complex from the endogenous RNA-directed DNA polymerase activity of uninfected chicken embryos. Nature New Biol. 242206.Google Scholar
  29. Kornberg, A., Lehman, I. R., and Simms, E. S. (1956). Polydeoxyribonucleotides synthesis by enzymes from E. coli. Fed. Proc. 15291.Google Scholar
  30. Kornberg, T., and Gefter, M. L. (1971). Purification and DNA synthesis in cell-free extracts: Properties of DNA polymerase II. Proc. Natl. Acad. Sci. 68761.Google Scholar
  31. Lee-Huang, S., and Cavalieri, L. B. (1963). Polyribonucleotides as templates for polydeoxyribonucleotides. Proc. Natl. Acad. Sci. 501116.Google Scholar
  32. Loeb, L. A., Tartof, K. D., and Travaglini, E. C. (1973). Copying natural RNAs with E. coli DNA polymerase. I. Nature New Biol. 24266.Google Scholar
  33. Pardee, A. B., Jacob, F., and Monod, J. (1959). The genetic control and cytoplasmic expression of ‘inductibility’ in the synthesis of β-galactosidase by Escherichia coli. J. Mol. Biol. 1165.Google Scholar
  34. Riva, S., and Silvestri, L. G. (1972). Rifamycins: A general view. Ann. Rev. Microbiol. 26199.Google Scholar
  35. Ross, J., Aviv, H., Scolnick, E., and Leder, P. (1972). In vitro synthesis of DNA complementary to purified rabbit globin m-RNA. Proc. Natl. Acad. Sci. 69264.Google Scholar
  36. Spiegelman, S., Burny, A., Das, M. R., Keydar, J., Schlorm, J., Travnicek, M., and Watson, K. C. (1970). DNA characterization of the product of RNA-directed DNA polymerases in oncogenic RNA viruses. Nature (Lond.) 227563.Google Scholar
  37. Taylor, J. M., Faras, A. J., Varmus, H. E., Goodman, H. M., Levinson, W. E., and Bishop, J. M. (1973). Transcription of ribonucleic acid by the ribonucleic acid directed deoxyribonucleic acid polymerase of Rous sarcoma virus and deoxyribonucleic acid polymerase I of E. coli. Biochemistry 12460.Google Scholar
  38. Temin, H. M., and Mizutani, S. (1970). RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature (Lond.) 2261211.Google Scholar
  39. Verma, I. M., Meuth, N. L., Bronfield, E., Manly, K. I., and Baltimore, D. (1971). Covalently linked RNA-DNA molecule as initial product of RNA tumor virus DNA polymerase. Nature New Biol. 233131.Google Scholar
  40. Verma, I. M., Temple, J. F., Fan, H., and Baltimore, D. (1972). In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA. Nature New Biol. 235163.Google Scholar
  41. Warburg, O., and Christian, W. (1942). Isolierung und kristallisation der gärungsferments Enolase. Biochem. Z. 310384.Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Mirko Beljanski
    • 1
  • Monique Beljanski
    • 1
  1. 1.Biochimie CellulaireInstitut PasteurParisFrance

Personalised recommendations