Skip to main content
Log in

Building block approach to organic/silica hybrid materials

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The reaction of the cubic octameric silicate anion, Si8O 8−20 , with dimethyldichlorosilane in 2,2-dimethoxypropane yielded solid products. FT-IR and solid-state 29Si NMR spectra of the products indicate that the silicate anion becomes cross-linked via the dimethylsilyl group without degradation of the cubic core, resulting in the formation of organic/silica hybrids consisting of the Si8O 8−20 structure as a building block. The hybrids are thermally stable up to ca. 380°C in air. The specific surface area of the hybrids is 31 m2 g−1, while the value increases to 339 m2 g−1 after calcination at 350°C in air. The process of increasing the surface area of the hybrids by the heat-treatment was investigated using solid-state 13C NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Cagle, W.G. Klemperer, and C.A. Simmons in Better Ceramics through Chemistry IV, Mather. Res. Soc. Symp. Proc. 180, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc., Pittsburgh, 1990), p. 29.

    Google Scholar 

  2. D. Hoebbel, I. Pitsch, D. Heidemann, H. Jancke, and W. Hiller, Z. Anorg. Allg. Chem. 583, 133 (1990).

    Google Scholar 

  3. D. Hoebbel, I. Pitsch, and D. Heidemann, Z. Anorg. Allg. Chem. 592, 207 (1991).

    Google Scholar 

  4. D. Schultze, P. Kölsch, M. Noack, P. Toussaint, I. Pitsch, and D. Hoebbel, Z. Anorg. Allg. Chem. 612, 137 (1992).

    Google Scholar 

  5. D. Hoebbel, T. Reinert, K. Endres, H. Schmidt, A. Kayan, and E. Arpac in Proceedings of the First European Workshop on Hybrid Organic-Inorganic Materials, edited by C. Sanchez and F. Ribot (Bierville, 1993), p. 319.

  6. D. Hoebbel, K. Endres, T. Reinert, and H. Schmidt in Better Ceramics through Chemistry VI, Mater. Res. Soc, Symp. Proc. 346, edited by A.K. Cheetham, C.J. Brinker, M.L. Mecartney, and C. Sanchez (Mater. Res. Soc., Pittsburgh, 1994), p. 863.

    Google Scholar 

  7. P. Kölsch, I. Pitsch, D. Schultze, D. Heidemann, and D. Hoebbel, J. Therm. Anal. 41, 789 (1994).

    Google Scholar 

  8. D. Hoebbel, K. Endres, T. Reinert, and I. Pitsch, J. Non-Cryst. Solids 176, 179 (1994).

    Google Scholar 

  9. P.A. Agaskar, J. Am. Chem. Soc. 111, 6858 (1989).

    Google Scholar 

  10. P.A. Agaskar in Proceedings of the 2nd A.N.A.I.C. Conference on Materials Science of Main-Group Elements (Springer-Verlag, Berlin) in the press.

  11. I. Hasegawa, M. Ishida, and S. Motojima in Proceedings of the First European Workshop on Hybrid Organic-Inorganic Materials, edited by C. Sanchez and F. Ribot (Bierville, 1993), p. 329.

  12. I. Hasegawa, M. Ishida, S. Motojima, and S. Satokawa in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, edited by A.K. Cheetham, C.J. Brinker, M.L. Mecartney, and C. Sanchez (Mater. Res. Soc., Pittsburgh, 1994), p. 163.

    Google Scholar 

  13. F.J. Feher and K.J. Weller, Chem. Mater. 6, 7 (1994).

    Google Scholar 

  14. W.M. Meier in Molecular Sieves (Society for Chemical Industry, London, 1968), p. 10.

    Google Scholar 

  15. I. Hasegawa, S. Sakka, K. Kuroda, and C. Kato, J. Mol. Liq. 34, 307 (1987).

    Google Scholar 

  16. I. Hasegawa, S. Sakka, Y. Sugahara, K. Kuroda, and C. Kato, J. Chem. Soc., Chem. Commun. 1989, 208 (1989).

    Google Scholar 

  17. I. Hasegawa and S. Motojima, J. Organomet. Chem. 441, 373 (1992).

    Google Scholar 

  18. I. Hasegawa, M. Ishida, and S. Motojima, Synth. React. Inorg. Met.-Org. Chem. 24, 1099 (1994).

    Google Scholar 

  19. P.A. Agaskar, Inorg, Chem. 29, 1603 (1990).

    Google Scholar 

  20. I. Hasegawa, Zeolites 12, 720 (1992).

    Google Scholar 

  21. L.S.D. Glasser, E.E. Lachowski, R.K. Harris, and J. Jones, J. Mol. Struct. 51, 239 (1979).

    Google Scholar 

  22. I. Hasegawa, Polyhedron 10, 1097 (1991).

    Google Scholar 

  23. E.D. Lipp and A.L. Smith in The Analytical Chemistry of Silicones, edited by A.L. Smith (John Wiley & Sons, New York, 1991), pp. 319–330.

    Google Scholar 

  24. F. Babonneau, K. Thorne, and J.D. Mackenzie, Chem. Mater. 1, 554 (1989).

    Google Scholar 

  25. F. Babonneau, L. Bois, J. Maquet, and J. Livage in EUROGEL '91, edited by S. Vilminot, R. Nass, and H. Schmidt (Elsevier, Amsterdam, 1992), p. 319.

    Google Scholar 

  26. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Polym. Sci., Polym. Chem. Ed. 30, 613 (1992).

    Google Scholar 

  27. R.H. Jarmain and M.T. Melchior, J. Chem. Soc., Chem. Commun. 1984, 414 (1984).

    Google Scholar 

  28. R.B. Taylor, B. Parbhoo, and D.M. Fillmore in The Analytical Chemistry of Silicones, edited by A.L. Smith (John Wiley & Sons, New York, 1991), p. 364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, I. Building block approach to organic/silica hybrid materials. J Sol-Gel Sci Technol 5, 93–100 (1995). https://doi.org/10.1007/BF00487725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00487725

Keywords

Navigation