Skip to main content
Log in

Raman study of structural defects in SiO2 aerogels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The structure of the silica aerogels was studied by Raman spectroscopy. The spectra of the solid network resembles that of bulk silica with additional bands related to organic groups and a large amount of OH groups.

The typical bands due to ring breathing also called defect bands D 1 and D 2 located at 490 and 610 cm−1 are present. However, the evolution of the D 2 band compared to that of OH band (980 cm−1) seems apparently, in contradiction with the results previously reported in the literature. During heat treatments between 25 and 300°C the D 2 and the OH bands increase simultaneously. Generally, in silica glass the defect band D 2 grows at the expense of the OH groups.

This result is explained by the oxidation of the organic compounds which, in this temperature range, leads to the formation of the both species (OH) and those related to siloxane rings. 29Si MAS NMR results are in agreement with the Raman study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C. Klein, C. Nelson, and K.L. Higgins, Mat. Res. Soc. Symp. Proc. 32, 293 (1984).

    Google Scholar 

  2. T.W. Zerda, M. Bradley, and J. Jonas, Mat. Lett. 3, 124 (1985).

    Google Scholar 

  3. I. Artaki, M. Bradley, T.W. Zerda, and J. Jonas, J. Phys. Chem. 89, 4399 (1985).

    Google Scholar 

  4. T.W. Zerda, I. Artaki, and J. Jonas, J. Non-Cryst. Solids 81, 365 (1986).

    Google Scholar 

  5. I. Artaki, T.W. Zerda, and J. Jonas, J. Non-Cryst. Solids 81, 381 (1986).

    Google Scholar 

  6. J.L. Lippert, S.B. Melpolder, and L.M. Kelts, J. Non-Cryst. Solids 104, 139 (1988).

    Google Scholar 

  7. G. Orcel, L.L. Hench, I. Artaki, J. Jonas, and T.W. Zerda, J. Non-Cryst. Solids 105, 223 (1988).

    Google Scholar 

  8. T.W. Zerda and G. Hoang, J. Non-Cryst. Solids 109, 9 (1989).

    Google Scholar 

  9. A. Bertolluza, C. Fagnano, M.A. Morelli, V. Gottardi, and M. Guglielmi, J. Non-Cryst. Solids 48, 117 (1982).

    Google Scholar 

  10. D.M. Krol and J.G. Van Lierop, J. Non-Cryst. Solids 63, 131 (1984).

    Google Scholar 

  11. V. Gottardi, M. Guglielmi, A. Bertolluza, C. Fagnano, and M.A. Morelli, J. Non-Cryst. Solids 63, 71 (1984).

    Google Scholar 

  12. A. Bertolluza, C. Fagnano, M.A. Morelli, M. Guglielmi, G. Scarini, and N. Maliavski, J. Raman Spectroscopy 19, 297 (1988).

    Google Scholar 

  13. C.A.M. Mulder and A.A.J.M. Damen, J. Non-Cryst. Solids 93, 387 (1987).

    Google Scholar 

  14. F.L. Galeener, J.C. Mikelsen, and N.M. Johnson in The Physics of SiO 2 and its Interfaces, edited by S.T. Pantelides (Pergamon Press Publishers, Yorktown Height, N.Y., 1978) p. 284.

    Google Scholar 

  15. C.J. Brinker, R.K. Brown, D.R. Tallant, and R.J. Kirkpatrick, J. Non-Cryst. Solids 120, 26 (1990).

    Google Scholar 

  16. B. Humbert, A. Burneau, J.P. Gallas, and J.C. Lavalley, J. Non-Cryst. Solids 143, 79 (1992).

    Google Scholar 

  17. J.C. Philips, Phys. Rev. B 32, 5350 (1985).

    Google Scholar 

  18. C.J. Brinker, R.J. Kirkpatrick, D.R. Tallant, B.C. Bunker, and B. Montez, J. Non-Cryst. Solids 99, 418 (1988).

    Google Scholar 

  19. G.E. Walrafen, M.S. Hokmabadi, and N.C. Holmes. J. Chem. Phys. 85(2), 771 (1986).

    Google Scholar 

  20. D.M. Krol, L.A.M. Mulder, and J.G. Van Lierop, J. Non-Cryst. Solids 86, 241 (1986).

    Google Scholar 

  21. R.K. Iler, The Chemistry of Silica (Wiley Interscience, N.Y. 1979).

    Google Scholar 

  22. S. Kitahara, K. Takada, T. Sakata, and H. Muraishi, J. Colloid. Interface Sci. 84, 519 (1981).

    Google Scholar 

  23. J. Phalippou, T. Woignier, and M. Prassas, J. Mater. Sci. 25, 3111(1990).

    Google Scholar 

  24. J. Pelous, J.L. Sauvajol, T. Woignier, and R. Vacher, J. Phys. France 51, 433 (1990).

    Google Scholar 

  25. R. Vacher, T. Woignier, J. Pelous, and E. Courtens, Phys. Rev. B. 37 (11), 1 (1988).

    Google Scholar 

  26. T. Woignier, J. Phalippou, R. Vacher, J. Pelous, and E. Courtens, J. Non Cryst. Solids 121, 198 (1990).

    Google Scholar 

  27. C.A. Murray and T.S. Greytak, Phys. Rev. B 20, 3368 (1979).

    Google Scholar 

  28. R.M. Stolen and G.E. Walrafen, J. Chem. Phys. 64, 2623 (1976).

    Google Scholar 

  29. C.J. Brinker, D.R. Tallant, E.P. Roth, and C.S. Ashley, J. Non Cryst. Solids 82, 117 (1986).

    Google Scholar 

  30. D.W. Sindorf and G.F. Maciel, J. Am. Chem. Soc. 105, 1487 (1983).

    Google Scholar 

  31. T. Woignier, J. Phalippou, and M. Prassas, J. Mater. Sci. 25, 3117 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woignier, T., Fernandez-Lorenzo, C., Sauvajol, J.L. et al. Raman study of structural defects in SiO2 aerogels. J Sol-Gel Sci Technol 5, 167–172 (1995). https://doi.org/10.1007/BF00487013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00487013

Keywords

Navigation