Advertisement

Fresenius' Zeitschrift für analytische Chemie

, Volume 313, Issue 4, pp 328–330 | Cite as

Ion-exchange separation and spectrophotometric determination of titanium in biological materials

  • T. Kiriyama
  • R. Kuroda
Original Papers

Summary

A combined anion-exchange-spectrophotometric method has been worked out for the determination of titanium in biological materials. The sample is dry-ashed at 420°C. The ash (ca. 0.5 g) is then decomposed with a mixture of nitric, perchloric and hydrofluoric acids, and is finally taken up in hydrochloric acid. The titanium is collected by anion-exchange on an Amberlite CG 400 (SCN) column from 1 M thiocyanate — 1 M hydrochloric acid solution and eluted with 4 M hydrochloric acid. Titanium is subsequently determined spectrophotometrically with diantipyrylmethane. Results of the determination of titanium in various materials of biological origin and in two NBS standard biological samples are compiled. Standard deviations are in the range of 3–9% (2.4% in synthetic mixtures).

Keywords

Titanium Hydrochloric Acid Perchlor Thiocyanate Hydrofluoric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Spurenbestimmung von Titan in biologischem Material durch Kombination von Anionenaustauscher-Trennung und Spektralphotometrie

Zusammenfassung

Bei der vorgeschlagenen Methode wird die Probe bei 420° C trocken verascht, die Asche mit einer Mischung von Salpeter-, Perchlor- und Flußsäure aufgeschlossen und in Salzsäure aufgenommen. Titan wird dann aus 1 M Thiocyanat-Salzsäurelösung an dem Anionenaustauscher Amberlite CG 400 (SCN) adsorbiert und mit 4M Salzsäure eluiert. Danach erfolgt die spektralphotometrische Bestimmung mit Diantipyrylmethan. Das Verfahren wurde auf synthetische Gemische, verschiedenartige biologische Materialien und zwei NBS-Standardsubstanzen angewendet. Die Standardabweichungen liegen im Bereich von 3–9% (2,4% für synthetische Gemische).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Čižek Z, Doležal J, Šulcek Z (1978) Anal Chim Acta 100:479Google Scholar
  2. 2.
    Donaldson EE (1969) Talanta 16:1505Google Scholar
  3. 3.
    Gladney ES (1980) Anal Chim Acta 118:385Google Scholar
  4. 4.
    Ishii H (1967) Bunseki Kagaku 16:110Google Scholar
  5. 5.
    Kiriyama K, Haraguchi M (1981) Bunseki Kagaku 30:T41Google Scholar
  6. 6.
    Kiriyama T, Haraguchi M, Kuroda R (1981) Fresenius Z Anal Chem 307:352Google Scholar
  7. 7.
    Kiriyama T, Kuroda R (1978) Anal Chim Acta 101:207Google Scholar
  8. 8.
    Minin AA (1955) Uch Zap Molotovsk Univ 9:177; (1957) Anal Abstr 4:2932Google Scholar
  9. 9.
    Mudroch A, Mudroch O (1977) X-Ray Spectrom 6:215Google Scholar
  10. 10.
    Snell FD (1978) Photometric and fluorometric methods of analysis, metals, J Wiley & Sons, New York Chichester Brisbane Toronto, p 1085Google Scholar
  11. 11.
    Tillmanns E, Correns CW (1978) Titanium, in: Wedepohl KH (ed) Handbook of geochemistry, II-2. Springer, Berlin HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • T. Kiriyama
    • 1
  • R. Kuroda
    • 2
  1. 1.Laboratory for Chemistry, Faculty of EducationKagoshima UniversityKagoshimaJapan
  2. 2.Laboratory for Analytical Chemistry, Faculty of EngineeringUniversity of ChibaChibaJapan

Personalised recommendations