Journal of Sol-Gel Science and Technology

, Volume 3, Issue 3, pp 157–168 | Cite as

Investigation of the sol-gel chemistry of ethylacetoacetate modified aluminum sec-butoxide

  • Laure Bonhomme-Coury
  • Florence Babonneau
  • Jacques Livage


Hydrolysis of aluminum sec-butoxide leads usually to precipitation; however, modification of the Al center with one ethylacetoacetate gives a new precursor, Al(OBu s )2(etac). Hydrolysis of Al(OBu s )2(etac) leads to transparent, homogeneous gels rather than precipitates and thus appears as an interesting precursor for the sol-gel synthesis of alumina-containing ceramics. The investigation of the sol-gel chemistry of Al(OBu s )2(etac) by Nuclear Magnetic Resonance and infrared techniques provides a detailed understanding of the effects of the ethylacetoacetate group on the chemistry at the Al center. 27Al NMR shows that in solution Al(OBu s )2(etac) exists as oligomeric species that contain hexa-, penta- and tetra-coordinated Al. When dissolved in ethanol, Al(OBu s )2(etac) undergoes exchange reactions with solvent as shown by 13C NMR, which strongly influence the nature of the species in equilibrium, favoring the formation of pentacoordinated Al sites. The effects of changes in reaction conditions on the species formed on hydrolysis were followed by 27Al, 13C NMR and infrared spectroscopies. These techniques indicate that the etac groups are much less susceptible to hydrolysis than the butoxy groups. Some of the etac groups survive to hydrolysis procedure, thus preventing complete condensation of the oxide network.


precursor chemistry hydrolysis chemical modification nuclear magnetic resonance aluminum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.E. Wood, A.R. Seidle, J.R. Hill, R.P. Skarjune, and C.J. Goodbrake, Mat. Res. Soc. Symp. Proc. 180, 97 (1990) and reference herein.Google Scholar
  2. 2.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, London, 1978).Google Scholar
  3. 3.
    R.C. Mehrotra, J. Indian Chem. Soc. 30, 585 (1953).Google Scholar
  4. 4.
    N.Ya. Turova, N.I. Kozlova, and M.I. Yanovskaya, Koord. Khim. 6, 508 (1980).Google Scholar
  5. 5.
    T.V. Rogova, N.Ya. Turova, and A.V. Novoselova, Dokl. Akad. Nauk SSSR, 285, 896 (1985).Google Scholar
  6. 6.
    A.I. Yanovskii, N.Ya. Turova, N.I. Kozlova, and Yu.T. Struchkov, Koord. Khim. 13, 242 (1987).Google Scholar
  7. 7.
    V.J. Shiner Jr., D. Whittaker, and V.P. Fernandez, J. Am. Chem. Soc. 85, 2318 (1963).Google Scholar
  8. 8.
    M.S. Bains, Can. J. Chem. 40, 381 (1962).Google Scholar
  9. 9.
    R.C. Mehrotra, J. Indian Chem. Soc. 31, 85 (1954).Google Scholar
  10. 10.
    J.G. Oliver, P.K. Phillips, and I.J. Worrall, J. Inorg. Nucl. Chem. 31, 1609 (1969).Google Scholar
  11. 11.
    J.W. Akitt and R.H. Duncan, J. Magn. Reson. 15, 162 (1974).Google Scholar
  12. 12.
    N.Ya. Turova, V.A. Kozunov, A.I. Yanovskii, N.G. Bokii, Yu.T. Struchkov, B.L. Tarnopol'skii, and A.V. Novoselova, Koord. Khim. 4, 1517 (1978).Google Scholar
  13. 13.
    N.Ya. Turova, V.A. Kozunov, A.I. Yanovskii, N.G. Bokii, Yu.T. Struchkov, and B.L. Tarnopol'skii, J. Inorg. Chem. 41, 5 (1979).Google Scholar
  14. 14.
    B.E. Yoldas, J. Appl. Chem. Biotechnol, 23, 803 (1973).Google Scholar
  15. 15.
    B.E. Yoldas, Am. Ceram. Soc. Bull. 54, 289 (1975).Google Scholar
  16. 16.
    A.C. Pierre and D.R. Uhlmann, J. Am. Ceram. Soc. 70, 28 (1987).Google Scholar
  17. 17.
    W.L. Olsen and L.J. Bauer, Mat. Res. Soc. Symp. Proc. 73, 187 (1986).Google Scholar
  18. 18.
    L.F. Nazar and L.C. Klein, J. Am. Ceram. Soc. 71, C-85 (1988).Google Scholar
  19. 19.
    L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson, Mat. Res. Soc. Symp. Proc. 180, 117 (1990).Google Scholar
  20. 20.
    J.-Y. Chane Ching and L. Klein, J. Am. Ceram. Soc. 71, 83 (1988).Google Scholar
  21. 21.
    C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).Google Scholar
  22. 22.
    A. Leaustic, F. Babonneau, and J. Livage, Chem. Mat. 1, 240 (1989).Google Scholar
  23. 23.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
  24. 24.
    R.C. Mehrotra, R. Bohra, and D.P. Gaur, Metal β-Diketonates and Allied Derivatives (Academic Press Inc., London, 1978).Google Scholar
  25. 25.
    T.R. Patterson, F.J. Pavlik, A.A. Baldoni, and R.L. Frank, J. Am. Chem. Soc. 81, 4213 (1959).Google Scholar
  26. 26.
    R.K. Mehrotra and R.C. Mehrotra, Can. J. Chem. 39, 795 (1961).Google Scholar
  27. 27.
    R.K. Mehrotra and A.K. Rai, Polyhedron 10, 1967 (1991).Google Scholar
  28. 28.
    M.F. Garbauskas, J.H. Wengrovius, R.C. Going, and J.S. Kasper, Acta Cryst. C 40, 1536 (1984).Google Scholar
  29. 29.
    J.H. Wengrovius, M.F. Garbauskas, E.A. Williams, R.C. Going, P.E. Donahue, and J.F. Smith, J. Am. Chem. Soc. 108, 982 (1986).Google Scholar
  30. 30.
    F. Babonneau, L. Coury, and J. Livage, J. Non-Cryst. Solids 121, 153 (1990).Google Scholar
  31. 31.
    L. Bonhomme-Coury, F. Babonneau, and J. Livage, Chem. of Materials 5, 323 (1993).Google Scholar
  32. 32.
    Program from D. Massiot (CRHPT, CNRS, Orleans, France).Google Scholar
  33. 33.
    L.B. Alemany and G.W. Kirker, J. Am. Chem. Soc. 108, 6158 (1986).Google Scholar
  34. 34.
    M.C. Cruickshank, L.S. Dent Glasser, S.A.I. Barri, and I.J.F. Poplett, J. Chem. Soc., Chem. Commun. 23 (1986).Google Scholar
  35. 35.
    R.A. Sinclair, W.B. Gleason, R.A. Newmark, J.R. Hill, S. Hunt, P. Lyon, and J. Stevens, in Chemical Processing of Advanced Materials, edited by L.L. Hench and J.K. West (J. Wiley and Sons, Inc., New York, 1992), p. 207.Google Scholar
  36. 36.
    D.L. Guertin, S.E. Wiberley, W.H. Bauer, and J. Goldenson, J. Phys. Chem. 60, 1018 (1956).Google Scholar
  37. 37.
    K. Nakamoto, P.J. McCarthy, A. Ruby, and A.E. Martell, J. Am. Chem. Soc. 83, 1066 (1961).Google Scholar
  38. 38.
    R. Jain, A.K. Rai, and R.C. Mehrotra, Polyhedron 5, 1017, (1986).Google Scholar
  39. 39.
    O. Kriz, B. Casensky, A. Lycka, J. Fusek, and S. Hermanek, J. Magn. Reson. 60, 375 (1984).Google Scholar
  40. 40.
    J.G. Oliver and I.J. Worrall, J. Chem. Soc. (A) 845 (1970).Google Scholar
  41. 41.
    D. Mueller, D. Hoebbel, and W. Gessner, Chem. Phys. Lett. 84, 25 (1981).Google Scholar
  42. 42.
    A. Léaustic, F. Babonneau, and J. Livage, Chem. Mat. 1, 248 (1989).Google Scholar
  43. 43.
    F. Ribot, P. Tolédano, and C. Sanchez, Chem. Mat. 3, 759 (1991).Google Scholar
  44. 44.
    C. Sanchez, F. Ribot, and S. Doeuff, in Inorganic and Organometallic Polymers with Special Properties, edited by R. Laine (NATO ASI series, E 206, Kluwer Academic Publishers, Dordrecht, The Netherlands 1992), p. 267.Google Scholar
  45. 45.
    P.M. Bertsch, R.I. Barnhisel, G.W. Thomas, W.J. Layton, and S.L. Smith, Anal. Chem. 58, 2583 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Laure Bonhomme-Coury
    • 1
  • Florence Babonneau
    • 1
  • Jacques Livage
    • 1
  1. 1.Chimie de la Matière CondenséeUniversité Pierre et Marie CurieParisFrance

Personalised recommendations