Structures and properties of Ormosils

Code: B1
  • John D. Mackenzie


Organically modified silicates (ORMOSILS) can be conveniently divided into three types. In Type A, the organic such as a dye, is mixed into the sol-gel liquid solution. On gelation, the organic is trapped in the gel. In Type B, a porous oxide gel is first formed and the porosity and pore size controlled by heating. An organic is then impregnated into the pores of the gel. In Type C, the organic is added to the oxide gel liquid solution but unlike Type A, a chemical bond is formed between the oxide and the organic. Types A, B and C can further be mixed. Together, these various types of ORMOSILS offer a very wide spectrum of chemistry, structures and applications. They constitute a new family of exciting materials with new scientific challenges and technical possibilities. A critical review will be presented on these ORMOSILS including structures, properties and applications.


ormosils inorganic-organic hybrids structure silica gels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avnir, D., Levy, D., and Reisfeld, R., J. Phys. Chem. 88, 5956 (1984).Google Scholar
  2. 2.
    Tani, T., Namikawa, H., Arai, K., and Makishima, A., J. Appl. Phys. 58, 3559 (1985).Google Scholar
  3. 3.
    Makishima, A., and Tani, T., J. Am. Ceram. Soc. 69, C-72 (1986).Google Scholar
  4. 4.
    Prasad, P.N., SPIE Proc. 1328, 168 (1990).Google Scholar
  5. 5.
    Toussaere, E., Zyss, J., Griesmar, P., and Sanchez, C., Nonlinear Optics 1, 349 (1991).Google Scholar
  6. 6.
    Zusman, R., Rottman, C., Ottolenghi, M., and Avnir, D., J. Non-Cryst. Solids 122, 107 (1990).Google Scholar
  7. 7.
    Braun, S., Rappoport, S., Zusman, R., Avnir, D., and Ottolenghi, M., Matls. Letters 10, 1 (1990).Google Scholar
  8. 8.
    Levy, D., Pena, J.M.S., Serna, C.J., and Oton, J.M., J. Non-Cryst. Solids 147, 646 (1992).Google Scholar
  9. 9.
    Levy, D., Einhorn, S., and Avnir, D., J. Non-Cryst. Solids 113, 137 (1989).Google Scholar
  10. 10.
    Nakazumi, H. and Amano, S., J. Chem. Soc. Chem. Comm. 1079 (1992).Google Scholar
  11. 11.
    Levy, D. and Avnir, D., J. Phys. Chem. 92, 4734 (1988).Google Scholar
  12. 12.
    Canva, M., Georges, P., Saux, G.Le., Brun, A., Chaput, F., and Boilot, J.P., J. Non-Cryst. Solids 147, 627 (1992).Google Scholar
  13. 13.
    Severin-Vantilt, M.M.E., and Oomen, E.W.J.L., J. Non-Cryst. Solids 159, 38 (1993).Google Scholar
  14. 14.
    Nakazumi, H., Osaka Prefecture University, private communication.Google Scholar
  15. 15.
    Whittingham, M.S., and Jacobson, A.J., Intercalation Chemistry (Academic Press, New York, 1981).Google Scholar
  16. 16.
    Elmer, T.H., Am. Ceram. Soc. Bull. 55, 999 (1976).Google Scholar
  17. 17.
    Liu, C.C., Ph.D. Thesis, University of California, Los Angeles (1980).Google Scholar
  18. 18.
    Pope, E.J.A. and Mackenzie, J.D., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R., MRS Symp. Proc. 73 (MRS, Pittsburgh, PA. 1986), p. 809.Google Scholar
  19. 19.
    Pope, E.J.A. and Mackenzie, J.D., MRS Bull. 12, 29 (1987).Google Scholar
  20. 20.
    Pope, E.J.A., Asami, A., and Mackenzie, J.D., J. Mater. Res. 4, 1018 (1989).Google Scholar
  21. 21.
    Hench, L.L., West, J.K., Zhu, B.F., and Ochoa, R., SPIE Proc. 1328, 230.Google Scholar
  22. 22.
    Hench, L.L., LaTorre, G.P., Donovan, S., Marotta, J., and Valliere, E., SPIE Proc. 1758, 94 (1992).Google Scholar
  23. 23.
    Nogues, J.L., Majewski, S., Walker, J.K., Bowen, M., Wojcik, R., and Moreshead, W.W., J. Am. Ceram. Soc. 71, 1159 (1988).Google Scholar
  24. 24.
    Pope, E.J.A., SPIE Proc. 1758, 360 (1992).Google Scholar
  25. 25.
    Watson, J.H.P., Phys. Rev. 148, 223 (1966).Google Scholar
  26. 26.
    Bartholomew, R.F. and Garfinkel, H.M., J. Electrochem. Soc. 116, 127 (1969).Google Scholar
  27. 27.
    Kadokura, K., Miura, Y., and Mackenzie, J.D., Proc. Intl. Conf. Phase Transformations, Pittsburgh, PA, August, 457 (1981).Google Scholar
  28. 28.
    Kadokura, K., Ph.D. Thesis, University of California, Los Angeles (1983).Google Scholar
  29. 29.
    Garvie, R.C., J. Phys. Chem. 82, 218 (1978).Google Scholar
  30. 30.
    Wilkes, G.L., Orter, B., and Huang, H., Polymer Prep. 26, 300 (1985).Google Scholar
  31. 31.
    Schmidt, H., J. Non-Cryst. Solids 73, 681 (1985).Google Scholar
  32. 32.
    Ravaine, D., Seminel, A., Charbouillot, Y., and Vincens, M., J. Non-Cryst. Solids 82, 210 (1986).Google Scholar
  33. 33.
    Chung, Y.J., Ting, S.J., and Mackenzie, J.D., Mater. Res. Soc. Proc. 180, 981 (1990).Google Scholar
  34. 34.
    Mackenzie, J.D., Chung, Y.J., and Hu, Y., J. Non-Cryst. Solids 147, 271 (1992).Google Scholar
  35. 35.
    Iwamoto, T., Morita, K., and Mackenzie, J.D., J. Non-Cryst. Solids 159, 65 (1993).Google Scholar
  36. 36.
    Stark, F.O., Falendar, J.R., and Wright, A.P., Comprehensive Organometallic Chemistry, Vol. 2, Pergamon Press, Oxford (1982).Google Scholar
  37. 37.
    Esquivias, L.E., and Zarzycki, J., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J.D., and Ulrich, D.R. (Wiley and Sons, New York, 1980) p. 255.Google Scholar
  38. 38.
    Morita, K., Hu, Y., and Mackenzie, J.D., submitted to J. Sol-Gel Sci. and Tech. (1993).Google Scholar
  39. 39.
    Ainsworth, L., J. Soc. Glass Tech. 38, 501 (1954).Google Scholar
  40. 40.
    Imaoka, M., Hasegawa, H., Hamaguchi, Y., and Kurotaki, Y., Yogyo Kyokashi, 79, 164 (1971).Google Scholar
  41. 41.
    Prod'homme, M., Phys. Chem. Glasses 9, 101 (1968).Google Scholar
  42. 42.
    Iwamoto, T., and Mackenzie, J.D., unpublished work.Google Scholar
  43. 43.
    Kaimoto, M., Morikawa, A., Iyoku, Y., and Imai, Y., Mater. Res. Soc. Symp. Proc. 207, 69 (1991).Google Scholar
  44. 44.
    Morikawa, A., Lyaku, Y., Kakimoto, M., and Imai, Y., J. Mater. Chem. 2, 679 (1992).Google Scholar
  45. 45.
    Mackenzie, J.D., J. Ceram. Soc. Japan, 101, 1 (1993).Google Scholar
  46. 46.
    Li, C.Y., Tseng, J.Y., Morita, K., Lechner, C., Hu, Y., and Mackenzie, J.D., SPIE Proc. 1758, 410 (1992).Google Scholar
  47. 47.
    Tseng, J.Y., Li, C.Y., Takada, T., Lechner, C., and Mackenzie, J.D., SPIE Proc. 1758, 612 (1992).Google Scholar
  48. 48.
    Dunn, B., Mackenzie, J.D., Zink, J.I., and Stafsudd, O.M., SPIE Proc. 1328, 174 (1990).Google Scholar
  49. 49.
    Lin, H.T., Bescher, E., Mackenzie, J.D., Dai, H., and Stafsudd, O.M., J. Matl. Sci. 27, 264 (1992).Google Scholar
  50. 50.
    Mark, J.E., Allcock, H.R., and West, R., Inorganic Polymers (Prentice Hall, New Jersey, 1992).Google Scholar
  51. 51.
    Shea, K.J., Webster, O., and Loy, D.A., Mater. Res. Soc. Symp. Proc. 180, 975 (1990).Google Scholar
  52. 52.
    Genet, M., Brandel, V., Lahalle, M.P., and Simoni, E., SPIE Proc. 1328, 194 (1990).Google Scholar
  53. 53.
    Reisfeld, R., Minti, H., and Eyal, E., SPIE Proc. 1513, 360 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • John D. Mackenzie
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations