Advertisement

Biochemical Genetics

, Volume 8, Issue 3, pp 239–248 | Cite as

The actual biochemical block in the arg-2 mutant of Chlamydomonas reinhardi

  • P. J. Strijkert
  • R. Loppes
  • J. S. Sussenbach
Article

Abstract

Arg-2, one of the first arginine-requiring mutants isolated in Chlamydomonas reinhardi, has long been regarded as lacking the enzyme argininosuccinate synthetase. In view of various discrepancies found in the literature, the position of this mutant has been reviewed. The results show that arg-2 has a normal argininosuccinate synthetase activity but lacks argininosuccinate lyase. This finding is in agreement with the results of recombination and complementation analysis, which indicate that arg-2 is included in the arg-7 cistron.

Keywords

Complementation Analysis Synthetase Activity Argininosuccinate Synthetase Argininosuccinate Lyase Biochemical Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, R. N. (1944). Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J. Biol. Chem. 156121.Google Scholar
  2. Ebersold, W. T. (1956). Crossing-over in Chlamydomonas reinhardi. Am. J. Bot. 43408.Google Scholar
  3. Ebersold, W. T. (1967). Chlamydomonas reinhardi: Heterozygous diploid strains. Science 157447.Google Scholar
  4. Eversole, R. A. (1956). Biochemical mutants of Chlamydomonas reinhardi. Am. J. Bot. 43404.Google Scholar
  5. Fincham, J. R. S. (1959). On the nature of the glutamic dehydrogenase produced by interallelic complementation at the am locus of Neurospora crassa. J. Gen. Microbiol. 21600.Google Scholar
  6. Fincham, J. R. S. (1966). Genetic Complementation, W. A. Benjamin, New York.Google Scholar
  7. Garen, A., and Garen, S. (1963). Complementation in vivo between structural mutants of alkaline phosphatase from E. coli. J. Mol. Biol. 713.Google Scholar
  8. Gillham, N. W. (1965). Induction of chromosomal and nonchromosomal mutations in Chlamydomonas reinhardi with N-methyl-N'-nitro-N-nitrosoguanidine. Genetics 52529.Google Scholar
  9. Gross, S. R., and Webster, R. E. (1963). Some aspects of interallelic complementation involving leucine biosynthetic enzymes of Neurospora. Cold Spring Harbor Symp. Quant. Biol. 28543.Google Scholar
  10. Hirs, C. H. W., Moore, S., and Stein, W. M. (1954). The chromatography of amino acids on ion exchange resins. Use of volatile acids for elution. J. Am. Chem. Soc. 766063.Google Scholar
  11. Hudock, G. A. (1962). The pathway of arginine biosynthesis in Chlamydomonas reinhardi. Biochem. Biophys. Res. Commun. 9551.Google Scholar
  12. Hudock, G. A. (1963). Repression of argininosuccinase in Chlamydomonas reinhardi. Biochem. Biophys. Res. Commun. 10133.Google Scholar
  13. Levine, R. P., and Ebersold, W. T. (1958). Gene recombination in Chlamydomonas reinhardi. Cold Spring Harbor Symp. Quant. Biol. 23101.Google Scholar
  14. Levine, R. P., and Goodenough, U. W. (1970). The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardi. Ann. Rev. Genet. 4397.Google Scholar
  15. Loppes, R. (1969). A new class of arginine-requiring mutants in Chlamydomonas reinhardi. Molec. Gen. Genet. 104172.Google Scholar
  16. Loppes, R. (1970). Selection of arginine-requiring mutants after treatment with three mutagens. Experientid (Basel) 26660.Google Scholar
  17. Loppes, R., and Strijkert, P. J. (1972). Arginine metabolism in Chlamydomonas reinhardi. Conditional expression of arginine-requiring mutants. Molec. Gen. Genet. 116298.Google Scholar
  18. Loppes, R., Matagne, R., and Strijkert, P. J. (1972). Complementation at the Arg-7 Locus in Chlamydomonas reinhardi. Heredity 28239.Google Scholar
  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  20. Ratner, S. (1955). Enzymatic synthesis of arginine (condensing and splitting enzymes). In Methods in Enzymology, Vol. II, Academic Press, New York, p. 356.Google Scholar
  21. Ratner, S., and Kunkemueller, M. (1966). Separation and properties of argininosuccinate and its two anhydrides, and their detection in biological materials. Biochemistry 51821.Google Scholar
  22. Reger, B. J., Fairfield, S. A., Epler, J. L., and Barnett, W. E. (1970). Identification and origin of some chloroplast aminoacyl-tRNA synthetases and tRNAs. Proc. Natl. Acad. Sci. 671207.Google Scholar
  23. Strijkert, P. J., and Sussenbach, J. S. (1969). Arginine metabolism in Chlamydomonas reinhardi. Evidence for a specific regulatory mechanism of the biosynthesis. Europ. J. Biochem. 8408.Google Scholar
  24. Sussenbach, J. S., and Strijkert, P. J. (1969a). Arginine metabolism in Chlamydomonas reinhardi. On the regulation of the arginine biosynthesis. Europ. J. Biochem. 8408.Google Scholar
  25. Sussenbach, J. S., and Strijkert, P. J. (1969a). Arginine metabolism in Chlamydomonas reinhardi. On the regulation of the arginine biosynthesis. Europ. J. Biochem. 8403.Google Scholar
  26. Sussenbach, J. S., and Strijkert, P. J. (1969b). Arginine metabolism in Chlamydomonas reinhardi. Arginine deiminase: The first enzyme of the catabolic pathway. FEBS Letters 3166.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • P. J. Strijkert
    • 1
  • R. Loppes
    • 2
  • J. S. Sussenbach
    • 1
  1. 1.Phillips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Laboratory of GeneticsUniversity of LiègeLiègeBelgium

Personalised recommendations