Skip to main content
Log in

An anomaly of the genetic regulation of the de novo pyrimidine pathway in the plant Arabidopsis

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Humans afflicted by hereditary orotic aciduria are characterized by insufficiencies in the de novo pyrimidine pathway. Mutants at a nuclear gene locus in Arabidopsis, in contrast, exhibit increased activities of orotidylic acid (O5P) pyrophosphorylase (2.4.2.10) and O5P-decarboxylase (4.1.1.23). In the plants, as well as in human cells, the symptoms of the genetic disorder can be partly cured by feeding the pyrimidine analogue 6-azauracil. In normal human cells, the supply of the antimetabolite 6-azauridine leads to augmented levels of these enzymes, and in the cell cultures of patients suffering from orotic aciduria type I nearly normal levels of the enzymes are observed. In the tissues of Arabidopsis, on 6-azauracil administration, the level of O5P-pyrophosphorylase decreases while that of O5P-decarboxylase is elevated. The genetic alteration may involve a regulatory function in both humans and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloomfield, R. A., Letter, A. A., and Wilson, R. P. (1969). Effect of orotic acid on the lipid and acid-soluble nucleotide concentration in avian liver. Biochim. Biophys. Acta 187266.

    Google Scholar 

  • Brown, G. K., Fox, R. M., and O'Sullivan, W. J. (1972). Alteration of quaternary structural behavior of an hepatic orotate phosphoribosyltransferase-orotidine-5′-phosphate decarboxylase complex in rats following allopurinol therapy. Biochem. Pharmacol. 212469.

    Google Scholar 

  • Carpenter, D. C. (1952). Paper chromatography of nucleic acid derivatives. Anal. Chem. 241203.

    Google Scholar 

  • Chung, S. C., Rédei, G. P., and White, J. A. (1974). Plastid differentiation on 6-azauracil media. Experientia 3092.

    Google Scholar 

  • Dawson, R. M. C., Elliot, D. C., Elliot, W. H., and Jones, K. M. (1959). Data for Biochemical Research, Clarendon, Oxford.

    Google Scholar 

  • De Deken-Grenson, M., and De Deken, R. H. (1959). Elimination of substances interfering with nucleic acids estimation. Biochim. Biophys. Acta 31195.

    Google Scholar 

  • Fox, R. M., O'Sullivan, W. J., and Firkin, B. G. (1969). Orotic aciduria. Am. J. Med. 47332.

    Google Scholar 

  • Girard, M. (1967). Isolation of ribonucleic acids from mammalian cells and animal viruses. Meth. Enzymol. 12A581.

    Google Scholar 

  • Handschumacher, R. E. (1960). Orotidylic acid decarboxylase: Inhibition studies with azauridine-5-phosphate. J. Biol. Chem. 2352917.

    Google Scholar 

  • Handschumacher, R. E., and Pasternak, C. A. (1958). Inhibition of orotidylic acid decarboxylase, a primary site of carcinostasis by 6-azauracil. Biochim. Biophys. Acta 30541.

    Google Scholar 

  • Handschumacher, R. E., Creasey, W. A., Jaffe, J. J., Pasternak, C. A., and Hankin, L. (1960). Biochemical and nutritional studies on the induction of fatty livers by dietary orotic acid. Proc. Natl. Acad. Sci. 46178.

    Google Scholar 

  • Holdgate, D. P., and Goodwin, T. W. (1965). Quantitative extraction and estimation of plant nucleic acids. Phytochemistry 4831.

    Google Scholar 

  • Krooth, R. S. (1964). Properties of diploid cell strains developed from patients with an inherited abnormality of uridine biosynthesis. Cold Spring Harbor Symp. Quant. Biol. 29189.

    Google Scholar 

  • Krooth, R. S. (1971). Molecular models for pharmacological tolerance and addiction. Ann. N. Y. Acad. Sci. 179548.

    Google Scholar 

  • Krooth, R. S., Pan, Y.-L., and Pinsky, L. (1973). Orotidine-5′-monophosphate decarboxylase activity of crude extracts of human cells. Biochem. Genet. 8133.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • Markham, R. (1955). Nucleic acids, their components and related compounds. In Paech, K., and Tracey, M. V. (eds.), Modern Methods of Plant Analysis, Vol. 4, Springer, Berlin, pp. 246–304.

    Google Scholar 

  • Millikan, D. F., and Pickett, E. E. (1964). A rapid method for the extraction and identification of RNA in plant tissue. Phytochemistry 3667.

    Google Scholar 

  • O'Donovan, G. A., and Neuhard, J. (1970). Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34278.

    Google Scholar 

  • Pinsky, L., and Krooth, R. S. (1967a). Studies on the control of the pyrimidine biosynthesis in human diploid cells strains, I. Effect of 6-azauridine on cellular phenotype. Proc. Natl. Acad. Sci. 57925.

    Google Scholar 

  • Pinsky, L., and Krooth, R. S. (1967b). Studies on the control of pyrimidine biosynthesis in human diploid cell strains, II. Effects of 5-azaorotic acid, barbituric acid, and pyrimidine precursors on cellular phenotype. Proc. Natl. Acad. Sci. 571267.

    Google Scholar 

  • Rédei, G. P. (1962). Supervital mutants of Arabidopsis. Genetics 47443.

    Google Scholar 

  • Rédei, G. P. (1963). Somatic instability caused by a cysteine sensitivity gene in Arabidopsis. Science 139767.

    Google Scholar 

  • Rédei, G. P. (1965a). Genetic control of subcellular differentiation. In Röbbelen, G. (ed.), Arabidopsis Res. Rep. Internat. Symp., Göttingen, University of Göttingen, pp. 119–127.

    Google Scholar 

  • Rédei, G. P. (1965b). Genetic blocks in the thiamine synthesis of the angiosperm Arabidopsis. Amer. J. Bot. 52834.

    Google Scholar 

  • Rédei, G. P. (1967a). Suppression of a genetic variegation by 6-azapyrimidines. J. Hered. 58229.

    Google Scholar 

  • Rédei, G. P. (1967b). Biochemical aspects of a genetically determined variegation in Arabidopsis. Genetics 56431.

    Google Scholar 

  • Rédei, G. P. (1967c). X-ray induced phenotypic reversions in Arabidopsis. Radiat. Bot. 7401.

    Google Scholar 

  • Rédei, G. P., Chung, S. C., and Plurad, S. B. (1973). Mutants, antimetabolites and differentiation. Brookhaven Symp. Biol. 25281–296.

    Google Scholar 

  • Reed, L. J., and Cox, D. J. (1966). Macromolecular organization of enzyme systems. Ann. Rev. Biochem. 3557.

    Google Scholar 

  • Smith, L. H., Jr., and Lotz, M. (1963). Studies on congenital orotic aciduria: Comparison of orotic acid metabolism in microorganisms. J. Lab. Clin. Med. 61211.

    Google Scholar 

  • Smith, L. H., Sullivan, M., and Huguley, C. M., Jr. (1961). Pyrimidine metabolism in man. IV. Enzymatic defect of orotic aciduria. J. Clin. Invest. 40656.

    Google Scholar 

  • Smith, L. H., Jr., Huguley, C. M., Jr., and Bain, J. A. (1972). Hereditary orotic aciduria. In Stanbury, J. B., Wyngaarden, J. B., and Fredrickson, D. S. (eds.), The Metabolic Basis of Inherited Disease, 3rd ed., McGraw-Hill, New York, pp. 1003–1029.

    Google Scholar 

  • Wagner, R. P., Bergquist, A., Barbee, T., and Kiritani, K. (1964). Genetic blocks in the isoleucine-valine pathway of Neurospora crassa. Genetics 49865.

    Google Scholar 

  • Wolcott, J. H., and Ross, C. (1967). Orotidine-5-phosphate decarboxylase and pyrophosphorylase of bean leaves. Plant Physiol. 42275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 6802. Approved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, S.C., Rédei, G.P. An anomaly of the genetic regulation of the de novo pyrimidine pathway in the plant Arabidopsis . Biochem Genet 11, 441–453 (1974). https://doi.org/10.1007/BF00486077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486077

Key words

Navigation