Advertisement

Biochemical Genetics

, Volume 11, Issue 3, pp 249–260 | Cite as

Quantitative aspects of ribosomal RNA synthesis during ovarian development in two mutants of Drosophia melanogaster

  • L. D. Puckett
  • L. A. Snyder
Article

Abstract

A quantitative polyacrylamide gel electrophoresis procedure for the analysis of microgram quantities of RNA has been developed. The method was used to determine the rates of rRNA synthesis and the molar ratios of various RNA species in Drosophila females homozygous for either of two X chromosome inversions that result in sterility of the females and produce lethality in X/0 males. Evidence is presented that in these genotypes the rate of rRNA synthesis during oogenesis is unimpaired but the mature oocyte has a 10–12% reduction in rRNA content.

Key words

rRNA synthesis X chromosome inversions gel electrophoresis position effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anker, H. S. (1970). A solubilizable acrylamide gel for electrophoresis. FEBS Letters 7293.Google Scholar
  2. Baker, W. K. (1968). Position-effect variegation. Advan. Genet. 14133.Google Scholar
  3. Baker, W. K. (1971). Evidence for position-effect suppression of the ribosomal RNA cistrons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 682472.Google Scholar
  4. Caton, J. E., and Goldstein, G. (1971). Electrophoresis of ribonucleic acids on polyacrylamide gel gradients. Anal. Biochem. 4214.Google Scholar
  5. Dapples, C. C., and King, R. C. (1970). The development of the nucleolus of the ovarian nurse cell of Drosophila melanogaster. Z. Zellforsch. 10334.Google Scholar
  6. David, J., and Merle, J. (1968). A re-evaluation of the duration of egg chamber stages in oogenesis of Drosophila melanogaster. Drosophila Inform. Serv. 43122.Google Scholar
  7. Dische, Z. (1955). Color reactions of nucleic acid components. In Chargaff, E., and Davidson, J. N. (eds.), The Nucleic Acids, Vol. 1, Academic Press, New York, pp. 1–285.Google Scholar
  8. Greenberg, J. R. (1969). Synthesis and properties of ribosomal RNA in Drosophila. J. Mol. Biol. 4685.Google Scholar
  9. Hastings, J. R. B., and Kirby, K. S. (1966). The nucleic acids of Drosophila melanogaster. Biochem. J. 100532.Google Scholar
  10. Hennig, W., and Meer, B. (1971). Reduced polyteny of ribosomal RNA cistrons in giant chromosomes of Drosophila hydei. Nature New Biol. 23370.Google Scholar
  11. Jacob, J., and Sirlin, J. L. (1959). Cell function in the ovary of Drosophila. I. DNA Chromosoma 10210.Google Scholar
  12. Kamp, A. J., and Blanchard, F. A. (1971). Quench correction in Čerenkov counting: Channels ratio and external source channels ratio methods. Anal. Biochem. 44369.Google Scholar
  13. King, R. C. (1964). Studies on early stages of insect oogenesis. In Highnam, K. C. (ed.), Insect Reproduction, Royal Entomological Society, London, pp. 13–25.Google Scholar
  14. King, R. C. (1970). Ovarian Development in Drosophila melanogaster, Academic Press, New York.Google Scholar
  15. King, R. C., Rubinson, A. C., and Smith, R. F. (1956). Oogenesis in adult Drosophila melanogaster. Growth 20121.Google Scholar
  16. Krider, H. H., and Plaut, W. (1972). Studies on nucleolar RNA synthesis in Drosophila melanogaster. J. Cell. Sci. 11675.Google Scholar
  17. Loening, U. E. (1966). The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem. J. 102251.Google Scholar
  18. Loening, U. E. (1968). Molecular weights of ribosomal RNA in relation to evolution. J. Mol. Biol. 38355.Google Scholar
  19. Mohan, J., and Ritossa, F. M. (1970). Regulation of ribosomal RNA synthesis and its bearing on the bobbed phenotype in Drosophila melanogaster. Develop. Biol. 22495.Google Scholar
  20. Richards, E. G., and Lecanidou, R. (1971). Quantitative aspects of the electrophoresis of RNA in polyacrylamide gels. Anal. Biochem. 4043.Google Scholar
  21. Ritossa, F. M. (1972). Procedure for magnification of lethal deletions of genes for ribosomal RNA. Nature New Biol. 240109.Google Scholar
  22. Ritossa, F. M., and Spiegelman, S. (1965). Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc. Natl. Acad. Sci. 53737.Google Scholar
  23. Ritossa, F. M., Atwood, K. C., and Spiegelman, S. (1966). A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of “ribosomal” DNA. Genetics 54819.Google Scholar
  24. Sokal, R. R., and Rohlf, F. J. (1969). The Principles and Practices of Statistics in Biological Research, W. H. Freeman and Co., San Francisco, pp. 405–486.Google Scholar
  25. Tartof, K. D. (1971). Increasing the multiplicity of ribosomal RNA genes in Drosophila melanogaster. Science 171294.Google Scholar
  26. Tartof, K. D., and Perry, R. P. (1970). The 5S RNA genes of Drosophila melanogaster. J. Mol. Biol. 51171.Google Scholar
  27. Weinmann, R. (1972). Regulation of ribosomal RNA and 5S RNA synthesis in Drosophila melanogaster. I. Bobbed mutants. Genetics 72267.Google Scholar
  28. Wimber, D. E., and Steffensen, D. M. (1970). Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science 170639.Google Scholar
  29. Yao, T. (1949). Cytochemical studies on the embryonic development of Drosophila melanogaster. I. Protein sulphydryl groups and nucleic acids. Quart. J. Microscop. Sci. 90401.Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • L. D. Puckett
    • 1
  • L. A. Snyder
    • 1
  1. 1.Department of Genetics and Cell BiologyUniversity of MinnesotaSt. Paul

Personalised recommendations