Biochemical Genetics

, Volume 13, Issue 1–2, pp 125–143 | Cite as

Carbamyl phosphate synthesis in Bacillus subtilis

  • Barry Potvin
  • Harry Gooder
Article

Abstract

In vitro and “in situ” assays have been developed to test the carbamyl phosphate synthetase (CPSase) activity of a series of pyrimidine-requiring mutants of Bacillus subtilis. The enzyme has been shown to be highly unstable, and was successfully extracted only in the presence of 10% glycerol and 1mM dithiothreitol (Cleland's reagent). It loses activity rapidly when sonicated or when treated with lysozyme. Genetic studies, using mutants, indicate that B. subtilis may possess two CPSases. This possibility and its physiological consequences were probed enzymatically. CPSase activity has been shown to undergo inhibition by both uridine triphosphate and dihydroorotate; activation has been demonstrated in response to phosphoribosyl pyrophosphate (PRPP) and (to a lesser extent) ornithine.

Key words

Bacillus subtilis carbamyl phosphate pyrimidine regulation cotransformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-El-Al, A., and Ingraham, J. L. (1969a). Control of carbamyl phosphate synthesis in Salmonella typhimurium. J. Biol. Chem. 244(154033.Google Scholar
  2. Abd-El Al, A., and Ingraham, J. L. (1969b). Cold sensitivity and other phenotypes resulting from mutation in pyrA gene. J. Biol. Chem. 244(154039.Google Scholar
  3. Anderson, P. M., and Marvin, S. V. (1970). Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamyl phosphate synthetase of Escherichia coli. Biochemistry 9(1171.Google Scholar
  4. Bethell, M., and Jones, M. E. (1969). Molecular size and feedback regulation characteristics of bacterial aspartate transcarbamylase. Arch. Biochem. Biophys. 134352.Google Scholar
  5. Chang, T.-Y., and Jones, M. E. (1974). Aspartate transcarbamylase from Streptococcus faecalis: Purification, properties and nature of an allosteric activator site. Biochemistry 13(4629.Google Scholar
  6. Davis, R. H. (1972). Metabolite distribution in cells. Science 178835.Google Scholar
  7. Hoch, J., and Mathews, J. (1972). Genetic studies in Bacillus subtilis. In Halvorson, H., Hanson, R., and Campbell, L. (eds.), Spores, Vol. V, American Society for Microbiology, Washington, D.C., pp. 113–116.Google Scholar
  8. Issaly, I. M., Issaly, A. S., and Reissig, J. L. (1970). Carbamyl phosphate biosynthesis in Bacillus subtilis. Biochim. Biophys. Acta 198482.Google Scholar
  9. Jones, M. E. (1971). Regulation of pyrimidine and arginine biosynthesis in mammals. Advan. Enzyme Regul. 919.Google Scholar
  10. Jones, M. E. (1972). Regulation of uridylic acid biosynthesis in eukaryotic cells. Current Topics Cell. Regul. 6227.Google Scholar
  11. Kaminskas, E., and Magasanik, B. (1970). Sequential synthesis of histidine-degrading enzymes in Bacillus subtilis. J. Biol. Chem. 245(143549.Google Scholar
  12. Kelleher, R. (1969). Genetic, physiological and biochemical studies in Bacillus subtilis. Ph.D. dissertation, University of North Carolina at Chapel Hill.Google Scholar
  13. Kelleher, R., and Gooder, H. (1973). Genetics and biochemistry of pyrimidine biosynthesis in Bacillus subtilis: Linkage between mutations resulting in a requirement for uracil. J. Bacteriol. 116(2577.Google Scholar
  14. Levine, R. L., and Kretchmer, N. (1971). Conversion of carbamyl phosphate to hydroxyurea—An assay for carbamyl phosphate synthetase. Anal. Biochem. 42324.Google Scholar
  15. Lowry, D. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  16. Lue, P. F., and Kaplan, J. G. (1969). The aspartate transcarbamylase and carbamyl phosphate synthetase of yeast: A multifunctional enzyme complex. Biochem. Biophys. Res. Commun. 34(4426.Google Scholar
  17. Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3208.Google Scholar
  18. Neale, E. K., and Chapman, G. B. (1969). Effect of thermal stress on the growth and fine structure of Bacillus subtilis. Bacteriol. Proc. 6939.Google Scholar
  19. Neumann, J., and Jones, M. E. (1964). End-product inhibition of aspartate transcarbamylase in various species. Arch. Biochem. Biophys. 104438.Google Scholar
  20. Potvin, B. (1973). The de novo pyrimidine biosynthetic pathway of Bacillus subtilis. Ph.D. dissertation, University of North Carolina at Chapel Hill.Google Scholar
  21. Reeves, R., and Sols, A. (1973). Regulation of Escherichia coli phosphofructokinase in situ. Biochem. Biophys. Res. Commun. 50(2459.Google Scholar
  22. Reissig, J. L., Issaly, A. S., and Issaly, I. M. (1967). Arginine-pyrimidine pathways in microorganisms. Natl. Cancer Inst. Monogr. 27259.Google Scholar
  23. Shoaf, W. T., and Jones, M. E. (1971). Initial steps in pyrimidine synthesis in Ehrlich ascites carcinoma. Biochem. Biophys. Res. Commun. 45(3796.Google Scholar
  24. Spizizen, J. (1958). Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonuclease. Proc. Natl. Acad. Sci. 441072.Google Scholar
  25. Tatibana, M., and Ito, K. (1967). Carbamyl phosphate synthetase of the hematopoietic mouse spleen and the control of pyrimidine biosynthesis. Biochem. Biophys. Res. Commun. 26(2221.Google Scholar
  26. Tatibana, M., and Shigesada, K. (1972a). Activation by 5-phosphoribosyl 1-pyrophosphate of glutamine-dependent carbamyl phosphate synthetase from mouse spleen. Biochem. Biophys. Res. Commun. 46(2491.Google Scholar
  27. Tatibana, M., and Shigesada, K. (1972b). Control of pyrimidine biosynthesis in mammalian tissues. V. Regulation of glutamine dependent carbamyl phosphate synthetase: Activation of 5-phosphoribosyl 1-pyrophosphate and inhibition by uridine triphosphate. J. Biochem. 72(3549.Google Scholar
  28. Trotta, P., Burt, M., Haschemeyer, R., and Meister, A. (1971). Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. Natl. Acad. Sci. 68(102599.Google Scholar
  29. Trotta, P., Estis, L., Meister, A., and Haschemeyer, R. (1974). Self-association and allosteric properties of glutamine-dependent carbamyl phosphate synthetase: Reversible dissociation to monomeric species. J. Biol. Chem. 249(2482.Google Scholar
  30. Wellner, V., Santos, J., and Meister, A. (1968). Carbamyl phosphate synthetase—A biotin enzyme. Biochemistry 7(82848.Google Scholar
  31. Williams, L. G., and Davis, R. H. (1970) Pyrimidine-specific carbamyl phosphate synthetase in Neurospora crassa. J. Bacteriol. 103(2335.Google Scholar
  32. Williams, L. G., Bernhardt, S. A., and Davis, R. H. (1971). Evidence for two discrete carbamyl phosphate pools in Neurospora. J. Biol. Chem. 246(4973.Google Scholar
  33. Wilson, G. A., and Bott, K. F. (1968). Nutritional factors influencing the development of competence in the Bacillus subtilis transformation system. J. Bacteriol. 951439.Google Scholar
  34. Womack, J. (1973). Pyrimidine overproduction in lower organisms. Ph.D. dissertation, Texas A&M University.Google Scholar
  35. Young, F. E., and Wilson, G. A. (1972). Genetics of Bacillus subtilis and other grampositive sporulating bacilli. In Halvorson, H. O., Hanson, R., and Campbell, L. L. (eds.), Spores, Vol. V, American Society for Microbiology, Washington, D.C.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Barry Potvin
    • 1
  • Harry Gooder
    • 1
  1. 1.Curriculum in Genetics and Department of Bacteriology and Immunology, School of MedicineUniversity of North CarolinaChapel Hill

Personalised recommendations