Biochemical Genetics

, Volume 5, Issue 4, pp 379–396 | Cite as

Comparative study of appearance of water-soluble antigens and brain esterase fractions in ontogenesis of two strains of rats

  • Sergey M. Sviridov
  • Leonid I. Korochkin
  • Ekaterina Poliakova
  • Natalia M. Matveeva


By means of immunoelectrophoresis of rat brain, 12 water-soluble antigens were detected, five of which were found to be specific to the brain. Histochemical reactions have identified two antigens that are not specific to the brain, lactate dehydrogenase and esterase. By means of enzymoelectrophoresis, 14 esterase fractions were determined. An immunoautoradiographic study of the synthesis of some antigens specific to the brain was carried out. It was found that rats responding to sound by epileptic seizures develop more slowly than normal rats. In particular, in rats resistant to auditory stimulus the antigenic spectrum typical of the brain of the adult rat (12 antigens) is formed by day 14 of postnatal life, while in rats of the sensitive strain this pattern takes 17 days to completely form. The last brain-specific antigen for rats susceptible to audiogenic epilepsy appears on day 17, while this antigen is present in normal rats on day 14. Fast-moving esterase fractions are detected earlier in ontogenesis in rats resistant to sound than in sensitive rats.


Lactate Lactate Dehydrogenase Auditory Stimulus Epileptic Seizure Sensitive Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelev, G., and Bakirov, R. (1968). Immunoradioautography. In Immunochemical Analysis. Moscow, 271 (Russian).Google Scholar
  2. Auerbach, R. (1954). Analysis of the developmental effects of a lethal mutation in the house mouse. J. Exptl. Zool. 127 305.Google Scholar
  3. Bamford, K., and Harris, H. (1964). Studies on “usual” and “a typical” serum cholin-esterase using α-naphthyl acetate as substrate. Ann. Human Genet. (London) 27 417.Google Scholar
  4. Barron, K., and Bernsohn, J. (1968). Esterases of developing human brain. J. Neurochem. 15 273.Google Scholar
  5. Burstone, M. S. (1962). Enzyme Histochemistry and its Application in the Study of Neoplasms, Academic Press, New York.Google Scholar
  6. Deol, M. S. (1964). The abnormalities of the inner ear in Kreisler mice. J. Embryol. Exptl. Morphol. 12 475.Google Scholar
  7. Dorfman, N. A. (1967). Changes of organospecific antigens of rat's liver in ontogenesis. Vopr. Med. Khim. XIII 1 51 (Russian).Google Scholar
  8. Eolkin, V. I. (1969). Heredity of audiogenic epileptical seizures. In: Behaviour Genetics, “Nauka,” Leningrad, pp. 71–81 (Russian).Google Scholar
  9. Fuller, J., and Thompson, W. (1960). Behavior Genetics, Wiley, New York, pp. 88–91.Google Scholar
  10. Galli, C. A., and Galli D. (1968). Cerebroside and sulphatide deficiency in the brain of “jimpy,” a mutant strain of mice exhibiting neurological symptoms. Nature 220 165.Google Scholar
  11. Gerebtzoff, M. (1953). Recherches histochimiques sur les acétylcholine et choline estérases. I. Introduction et technique. Acta Anat. 19 366.Google Scholar
  12. Gluecksohn-Waelsch (1964). Genetic control of mammalian differentiation. In Genetics Today, Pergamon Press, New York, p. 209.Google Scholar
  13. Goldschmidt, R. (1961). Theoretische Genetik, Akademie-Verlag, Berlin.Google Scholar
  14. Griffiths, W. Y. (1942). Transmission of convulsions in the white rat. J. Comp. Psychol. 34 263.Google Scholar
  15. Gusev, A., and Tsvetkova, E. (1961). Method of microprecipitation reaction in agar. Lab. Delo 2 43 (Russian).Google Scholar
  16. Hamburgh, M. (1963). Analysis of the postnatal developmental effects of “reeler,” a neurological mutation in mice. Develop. Biol. 8 165.Google Scholar
  17. Himwich, W. (1962). Biochemical and neurophysiological development of the brain in the neonatal period. Intern. Rev. Neurobiol. 4 117.Google Scholar
  18. Kalckar, U. M., and Herman, M. (1947). J. Biol. Chem. 167 461. Cited in Bailey, J. L. (1962). Techniques in Protein Chemistry, Elsevier, Amsterdam.Google Scholar
  19. King, J. (1967). Behavioral modification of the gene pool. In Hirsch, J. (ed.), Behavior-Genetic Analysis, McGraw-Hill, New York.Google Scholar
  20. Kolpakov, V. G. (1966). A genetico-biochemical investigation of audiogenic seizures. I. Genetika 8 94 (Russian).Google Scholar
  21. Korochkin, L. I. (1970a). Identification of esterases fractions of rat's brain by microelectrophoresis in starch and polyacrilamide gels. Dokl. Akad. Nauk SSSR 190 1459 (Russian).Google Scholar
  22. Korochkin, L. I. (1970b). Some regularities of neuromorphogenesis. In Zdanov, D. (ed.), Recent Advances in Anatomical Research in the USSR, IX Intern. Congr. Anat., Moscow.Google Scholar
  23. Korochkin, L. I., and Bogomolova, V. I. (1967). The genetic apparatus of cells and the mechanisms of pigmentogenesis. Genetika 9 10 (Russian).Google Scholar
  24. Korochkin, L. I., and Oleneff, S. N. (1966). Mechanisms and factors of neural differentiation. Usp. Sovrem. Biol. 62 77 (Russian).Google Scholar
  25. Korochkin, L. I., and Rauschenbach, I. (1971). Morphological investigation on brains of rats of different strains. Ontogenesis 2 600 (Russian).Google Scholar
  26. Korochkin, L. I., Serov, O. L., Kolpakov, V. G., Sviridov, S. M., Maksimovsky, L. F., Golubitsa, A. N., Trut, L. N., Karasik, G. I., and Belayev, D. K. (1969). Some biochemical studies on brains of foxes with different hereditarily determined behaviour. Genetika 5 36 (Russian).Google Scholar
  27. Korochkin, L. I., Sviridov, S. M., Ivanov, V. N., Mautskaya, E. I., and Bakhtina, T. K. (1971). Immunohistochemical studies of S-100 protein of brain of two rat strains during post-natal ontogenesis. Dokl. Akad. Nauk SSSR 198 4 (Russian).Google Scholar
  28. Kosinski, E., and Grabar, P. (1967). Immunochemical studies of rat brain. J. Neurochem. 14 273.Google Scholar
  29. Krushinsky, L. V. (1960). Formation of normal and pathological animal behavior. Moscow University (Russian).Google Scholar
  30. Krushinsky, L. V., Molodkina, L. I., and Romanova, L. G. (1968). Genetical investigation and pathophysiology of nervous system. In Genetics and Pathology, “Medgis,” Moscow, pp. 186–199 (Russian).Google Scholar
  31. Kuchl, L. (1967). Evidence for nuclear synthesis of LDH in rat liver. J. Biol. Chem. 242 2199.Google Scholar
  32. Lagnado, J., and Hardy, M. (1967). Brain esterases during development. Nature 214 1207.Google Scholar
  33. Leone, C., and Anthony, R. (1966). Serum esterases among registered breeds of dogs as revealed by immunoelectrophoretic comparisons. Comp. Biochem. Physiol. 18 359.Google Scholar
  34. MacPherson, C., and Liakopolou, A. (1965). Water soluble antigens of brain. Federation Proc. 24 272.Google Scholar
  35. Markert, C., and Hunter, R. (1959). The distribution of esterases in mouse tissues. J. Histochem. Cytochem. 7 42.Google Scholar
  36. Markert, C., and Möller, F. (1959). Multiple forms of enzymes: Tissue, ontogenetic and species patterns. Proc. Natl. Acad. Sci. 45 753.Google Scholar
  37. Maximovsky, L. F. (1970). Ontogenetic changes of RNA content and nucleotide composition in neurons of the Deiters' nucleus in the brain of rats of two strains. Ontogenesis 1 206 (Russian).Google Scholar
  38. Meier, H., Hoag, W., and Jordan, E. (1964). Esterase alterations in neurological mutants of the mouse. Experientia 20 433.Google Scholar
  39. Nellhaus, G., (1963). Experimental epilepsy in rabbits, In Psychophysiologie, neuropharmacologie et biochimie de la crise audiogene, Paris, p. 131.Google Scholar
  40. Ogawa, T. (1968). Strain difference in organogenesis in some strains of mice and rats. Ann. Rept. Res. Inst. Enivironmental Med. Nagoya Univ. 16 51–58.Google Scholar
  41. Oja, S. (1966). Postnatal changes in the concentration of nucleic acids, nucleotides and amino acids in the rat brain. Ann. Acad. Sci. Fennicae Ser. A V 125 7.Google Scholar
  42. Pearse, A. (1960). Histochemistry: Theoretical and Applied, J. & A. Churchill, Ltd., London.Google Scholar
  43. Poulik, M. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature 180 1477.Google Scholar
  44. Rauch, H. (1968). Electrophoretic membrane protein variants associated with the D-locus in the house mouse. Genetics 60 214.Google Scholar
  45. Rauch, H., and Jost, M. T. (1963). Phenylalanine metabolism in dilute lethal mice. Genetics 48 1487.Google Scholar
  46. Rauschenbach, I., and Korochkin, L. I. (1971). Changes of nucleic acids in the brain of rats of different strains. Ontogenesis 2 450 (Russian).Google Scholar
  47. Schlesinger, K., Elston, R., and Boggan, W. (1966). The genetics of sound-induced seizure in inbred mice. Genetics 54 95.Google Scholar
  48. Schmalhausen, I. I. (1938). The Organism in Ontogenesis and Phylogenesis. Moscow-Leningrad (Russian).Google Scholar
  49. Serov, O. L., and Korochkin, L. I. (1971). The genetic apparatus and the processes of neurocytogenesis. Ontogenesis 2 17 (Russian).Google Scholar
  50. Sidman, R., Dickie, M., and Appel, S. (1964). Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. Science 144 309.Google Scholar
  51. Sidman, R., Green, M., and Appel, S. (1965). Catalogue of the Neurological Mutants of the Mouse, Harvard University Press, Cambridge, Mass.Google Scholar
  52. Sviridov, S. M., and Poliakova, E. W. (1969). Immunochemical studies of the brain of rats during postnatal ontogenesis. Dokl. Akad. Nauk SSSR 187 925 (Russian).Google Scholar
  53. Uriel, J. (1963). Characterization of enzymes in specific immune-precipitates. Ann. N.Y. Acad. Sci. 103 956.Google Scholar
  54. Ursprung, H., Smith, K., Sofer, W., and Sullivan, D. (1968). Assay systems for the study of gene function. Science 160 1075.Google Scholar
  55. Wagner, R., and Mitchell, H. (1964). Genetics and Metabolism, 2nd ed., Wiley, New York.Google Scholar
  56. Witt, G., and Hall, C. (1949). The genetics of audiogenic seizures in the house mouse. J. Comp. Physiol. Psychol. 42 1.Google Scholar
  57. Yamamura, H. (1969). Individuelle Unterschiede des Entwicklungsstandes bei Embryonen der Maus (C57BL) in der Fruhen Phase der Organogenese. Roux Arch. 162 218.Google Scholar
  58. Yoon, C. H. (1969). Disturbances in developmental pathways leading to a neurological disorder of genetic origin “leaner” in mice. Develop. Biol. 20 158.Google Scholar
  59. Yoon, C., and Harris, S. (1962). Cholinesterase studies of neurologic mutants in mice. Neurology 12 423.Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • Sergey M. Sviridov
    • 1
  • Leonid I. Korochkin
    • 1
  • Ekaterina Poliakova
    • 1
  • Natalia M. Matveeva
    • 1
  1. 1.Institute of Cytology and GeneticsNovosibirskUSSR

Personalised recommendations