Biochemical Genetics

, Volume 14, Issue 7–8, pp 577–585 | Cite as

Characterization of hemoglobin Burke [β107 (G9) Gly→Arg]

  • James W. TurnerJr.
  • Richard T. Jones
  • Bernadine Brimhall
  • Michael C. DuVal
  • Robert D. Koler
Article

Abstract

Hb Burke [β107 (G9) Gly→Arg] was discovered in a young woman with hemolytic anemia. A substitution in this position has not been previously reported either in the human β-chain or in any of the animal β-chains so far sequenced. The abnormal hemoglobin shows heat instability and a lowered oxygen affinity. The substitution of a large charged arginine residue for the small glycine residue in the G helix next to a heme contact (Leu-106) may be responsible for these effects. Hb Burke is compared with five other hemoglobins having Gly-Arg substitutions in other parts of the molecule.

Key words

Hb Burke variant hemoglobin unstable hemoglobin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, J. M. (1975). Structure and function of hemoglobin. Prog. Biophys. Mol. Biol. 29225.Google Scholar
  2. Blackwell, R. Q., and Liu, C. S. (1968). Hemoglobin G Taiwan-Ami: α2β2 25 Gly→Arg Biochem. Biophys. Res. Commun. 30690.Google Scholar
  3. Clegg, J. B., Naughton, M. A., and Weatherall, D. J. (1966). Abnormal human hemoglobins: Separation and characterization of α and β chains by chromatography, and determination of two new variants, Hb Chesapeake and Hb J Bangkok. J. Mol. Biol. 1991.Google Scholar
  4. Dayhoff, M. O. (1972). Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington, D.C.Google Scholar
  5. Huisman, T. H. J., and Dozy, A. M. (1965). Studies on heterogeneity of hemoglobin. IX. Use of tris(hydroxymethyl)aminomethane-HCl buffers in anion-exchange chromatography of hemoglobins. J. Chromatogr. 19160.Google Scholar
  6. Imai, K., Morimoto, H., Kotani, M., Watari, H., Hirata, W., and Kuroda, M. (1970). Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim. Biophys. Acta 200189.Google Scholar
  7. Jones, R. T. (1970). Automatic peptide chromatography. Methods Biochem. Anal., 18205.Google Scholar
  8. Koler, R. D., Jones, R. T., Bigley, R. H., Litt, M., Lovrien, E., Brooks, R., Lahey, M. E., and Fowler, R. (1973). Hemoglobin Casper: β106(G8)Leu→Pro. A contemporary mutation. Am. J. Med. 55549.Google Scholar
  9. Lehmann, H., and Huntsman, R. G. (1974). Man's Hemoglobins, North-Holland, Oxford, p. 228.Google Scholar
  10. Rahbar, S., Kinderlerer, J. L., and Lehmann, H. (1969). Haemoglobin L Persian Gulf: α57(E6)glycine→arginine. Acta Haematol. 42169.Google Scholar
  11. Ranney, H. M., Jacobs, A. S., Udem, L., and Zalusky, R. (1968). Hemoglobin Riverdale-Bronx: An unstable hemoglobin resulting from the substitution of arginine for glycine at helical residue B6 of the β polypeptide chain. Biochem. Biophys. Res. Commun. 331004.Google Scholar
  12. Reynolds, C. A., and Huisman, T. H. J. (1966). Hemoglobin Russ or α2 51 Argβ2. Biochim. Biophys. Acta 130541.Google Scholar
  13. Rieder, R. G. (1970). Hemoglobin stability: Observations on the denaturation of normal and abnormal hemoglobins by oxidant dyes, heat, and alkali. J. Clin. Invest. 492369.Google Scholar
  14. Riggs, A. (1951). The metamorphosis of hemoglobin in the bullfrog. J. Gen. Physiol. 3523.Google Scholar
  15. Schneider, R. G. (1974a). Differentiation of electrophoretically similar hemoglobins by electrophoresis of the globin chains. Clin. Chem. 201111.Google Scholar
  16. Schneider, R. G. (1974b). Identification of hemoglobins by electrophoresis. Crit. Rev. Clin. Lab. Sci. 541.Google Scholar
  17. Vella, F., Casey, R., Lehmann, H., Labossiere, A., and Jones T. G. (1974). Haemoglobin Ottawa: α2 15(A13)Gly→Argβ2. Biochim. Biophys. Acta 33625.Google Scholar
  18. Wade, P. T., Jenkins, T., and Huehns, E. R. (1967). Haemoglobin variant in a Bushman: Haemoglobin D Bushman αβ2,2 16Gly-Arg. Nature 216688.Google Scholar
  19. Wajcman, H., Labie, D., and Schapira, G. (1973). Two new hemoglobin variants with deletion: Hemoglobin Tours: Thr β 87(F3) deleted and hemoglobin St. Antoine: Gly-Leu β74-75(E18-19) deleted. Biochim. Biophys. Acta 295495.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • James W. TurnerJr.
    • 1
  • Richard T. Jones
    • 2
  • Bernadine Brimhall
    • 2
  • Michael C. DuVal
    • 3
  • Robert D. Koler
    • 3
  1. 1.The Springfield Plaza Professional BuildingSpringfield
  2. 2.Department of BiochemistryUniversity of Oregon Health Sciences CenterPortland
  3. 3.Division of Medical GeneticsUniversity of Oregon Health Sciences CenterPortland

Personalised recommendations