Biochemical Genetics

, Volume 10, Issue 3, pp 231–242 | Cite as

Esterase-2 in Ephestia kühniella. II. Tissue-specific patterns

  • Friedrich Leibenguth


Esterase-2 polymorphism has been investigated quantitatively. Staining intensities of the homodimer bands mm, ff, and ss are not equally expressed but found in relative activities of 1:0.5:0.7 in fat bodies and 1:1:3 in testes and gut walls. Relative intensities of the parental bands are binomially distributed in the three-banded patterns of heterozygotes in an exactly tissue-specific manner. Organ-specific proportions of relative activity remain constant throughout postembryonic development. Among reasons which may influence genesis of allele- and organ-specific activities of homodimer bands in homozygotes and may lead to asymmetrical distribution of intensities in the patterns of heterozygotes, a hypothesis of differential allelic activity is discussed, according to which the structural alleles 2 m , 2 f , and 2 s are closely linked to the alleles RG a , RG b , and RG c of a controlling gene.


Relative Intensity Relative Activity Asymmetrical Distribution Postembryonic Development Allelic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cölln, K. (1971). Über Normogenese und hormonale Kontrolle stadienspezifischer Verän derungen in den Proteinspektren der Hämolymphe und des Fettkörpers von Ephestia kühniella. Dissertation, Köln.Google Scholar
  2. Efron, Y. (1970). Alcohol dehydrogenase in maize: Genetic control of enzyme activity. Science 170751.Google Scholar
  3. Fritz, P. J., Vesell, E. S., White, E. L., and Pruitt, K. M. (1969). The roles of synthesis and degradation in determining tissue concentrations of lactate dehydrogenase. Proc.Natl. Acad. Sci. 62558.Google Scholar
  4. Leibenguth, F. (1972). Polymorphismus und Aktivitätsregulation der Esterase-2 bei Ephestia kühniella. Mol. Gen. Genet. 116166.Google Scholar
  5. Leibenguth, F. (1973). Esterase-2 in Ephestia kühniella. I. Genetics and characterization. Biochem. Genet. 10219.Google Scholar
  6. Locke, M., and Collins, J. V. (1967). Protein uptake in multivesicular bodies in the moltintermolt cycle of an insect. Science 155467.Google Scholar
  7. Locke, M., and Collins, J. V. (1968). Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J. Cell Biol. 36453.Google Scholar
  8. Paigen, K. (1961). The genetic control of enzyme activity during differentiation. Proc. Natl. Acad. Sci. 471641.Google Scholar
  9. Price, G. M. (1966). The in vitro incorporation of (U-14C)valine into fat body protein of the larva of the blowfly, Calliphora erathrocephala. J. Insect Physiol. 12731.Google Scholar
  10. Schwartz, D. (1962). Genetic studies on mutant enzymes in maize. III. Control of gene action in the synthesis of pH 7.5 esterase. Genetics 471609.Google Scholar
  11. Schwartz, D. (1971). Genetic control of alcohol dehydrogenase. A competition model for regulation of gene action. Genetics 67411.Google Scholar
  12. Sehl, A. (1971). Furchung und Bildung der Keimanlage bei der Mehlmotte Ephestia kühniella. Z. Morphol. Ökol. Tiere 20533.Google Scholar
  13. Shows, T. B., and Ruddle, F. H. (1968). Function of the lactate dehydrogenase B gene in mouse erythrocytes: Evidence for control by a regulatory gene. Proc. Natl. Acad. Sci. 61574.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • Friedrich Leibenguth
    • 1
  1. 1.Institut für Genetik der Universität des SaarlandesSaarbrückenGermany

Personalised recommendations