Skip to main content

Frequentist probability and frequentist statistics

This is a preview of subscription content, access via your institution.

References

  1. de Finetti, B., Probability, Induction and Statistics, John Wiley & Sons, New York, 1972.

    Google Scholar 

  2. A Selection of Early Statistical Papers of J. Neyman, University of California Press, Berkeley, 1967.

  3. Neyman, J., ‘The Emergence of Mathematical Statistics’, in On the History of Statistics and Probability (ed. by D. B. Owen), Marcel Dekker, New York, 1976.

    Google Scholar 

  4. Neyman, J., ‘On the Use of Maximum Likelihood Estimators’, Bulletin of the International Statistical Institute 38, Part 1 (1961), 193–200.

    Google Scholar 

  5. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1, John Wiley & Sons, New York, 3rd ed., 1968.

    Google Scholar 

  6. Harris, T. E., The Theory of Branching Processes, Springer-Verlag, Berlin, 1963.

    Google Scholar 

  7. Karlin, S., A First Course in Stochastic Processes, Academic Press, New York, 3rd ed., 1969.

    Google Scholar 

  8. Kolmogorov, A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933.

    Google Scholar 

  9. Doob, J. L., Stochastic Processes, John Wiley & Sons, New York, 1953.

    Google Scholar 

  10. Dynkin, E. B., Markov Processes, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  11. Loève, M., Probability Theory, Van Nostrand, New York, 2nd ed., 1960.

    Google Scholar 

  12. von Mises, R., Wahrscheinlichkeit Statistik und Wahrheit, Julius Springer, Vienna, 1936. See also von Mises, R., Probability Statistics and Truth (trans. H. Geiringer), George Allen and Unwin Ltd., London, 1957.

    Google Scholar 

  13. Borel, E., Elements de la Théorie des Probabilités, Hermann, Paris, 3rd ed., 1924.

    Google Scholar 

  14. Borel, E., Le Hasard, Hermann, Paris, 1920.

    Google Scholar 

  15. Neyman, J. and Pearson, E. S., ‘On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference’, Biometrika 20-A, Part 1 (1928), 175–240. (See also [17] 1–66.)

    Google Scholar 

  16. Neyman, J. and Pearson, E. S., ‘On the Problem of the Most Efficient Tests of Statistical Hypotheses’, Philosophical Transactions of the Royal Society of London 231 (1933), 289–337. (See also [17] 140–185.)

    Google Scholar 

  17. Joint Statistical Papers of J. Neyman and E. S. Pearson, University of California Press, Berkeley, 1967.

  18. Neyman, J., Lectures and Conferences on Mathematical Statistics and Probability, Graduate School of U.S. Department of Agriculture, Washington, 2nd ed., 1952.

    Google Scholar 

  19. Brownlee, K. A., Statistical Theory and Methodology in Science and Engineering, John Wiley & Sons, New York, 1960.

    Google Scholar 

  20. Lehmann, E. L., Testing Statistical Hypotheses, John Wiley & Sons, New York, 1959. Translated into Russian, Polish, and Japanese.

    Google Scholar 

  21. Schmetterer, L., Einfürung in die Mathematische Statistik, Springer-Verlag, Vienna, 1966.

    Google Scholar 

  22. Berger, A. and Wald, A., ‘On Distinct Hypotheses’, Annals of Math. Stat. 20 (1949), 104–109.

    Google Scholar 

  23. Neyman, J. and Pearson, E. S., ‘The Testing of Statistical Hypotheses in Relation of Probabilities A Priori’, Proc. Cambridge Philos. Soc. 29 (1933), 492–510.

    Google Scholar 

  24. Wald, A., Statistical Decision Functions, John Wiley & Co., New York, 1950.

    Google Scholar 

  25. Davies, R. B., ‘Beta-Optimal Test and an Application to the Summary Evaluation of Experiments’, J. of the Royal Statistical Society 31 (1969), 524–538.

    Google Scholar 

  26. Neyman, J., ‘Optimal Asymptotic Tests of Composite Statistical Hypotheses’, Probability and Statistics (The Harald Cramér Volume) (ed. by U. Grenander), Almquist and Wiksells, Uppsala, Sweden, 1959, pp. 213–234.

    Google Scholar 

  27. Traxler, R. H., ‘Snag in the History of Factorial Experiments’, in On The History of Statistics (ed. by D. B. Owen), Marcel Dekker, New York, 1976, pp. 281–295.

    Google Scholar 

  28. Fisher, R. A., Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh, 5th ed., 1934.

    Google Scholar 

  29. Fisher, R. A., The Design of Experiments, Oliver and Boyd, Edinburgh, 1936.

    Google Scholar 

  30. Fisher, R. A. and Yates, F., Statistical Tables for Biological, Agricultural and Medical Research, Hafner, New York, 6th ed., 1963.

    Google Scholar 

  31. Cochran, W. G., ‘The Vital Role of Randomization in Experiments and Surveys’, in The Heritage of Copernicus (ed. by J. Neyman), Massachusetts Institute of Technology Press, Cambridge, Massachusetts, 1974, pp. 445–463.

    Google Scholar 

  32. Neyman, J., ‘Experimentation With Weather Control’, J. of the Royal Statistical Society 130 (1967), 285–326.

    Google Scholar 

  33. Neyman, J., Scott, E. L., and Smith, J. A., ‘Areal Spread of the Effect of Cloud Seeding at the Whitetop Experiment’, Science 163 (1969), 1445–1449.

    Google Scholar 

  34. Neyman, J., Lovasich, J. L., Scott, E. L. and Wells, M. A., ‘Hypothetical Explanations of the Negative Apparent Effects of Cloud Seeding in the Whitetop Experiment’, Proc. U.S. Nat. Acad. Sci. 68 (1971), 2643–2646.

    Google Scholar 

  35. Harville, D. A., ‘Experimental Randomization: Who Needs It?’, The American Statistician 29 (1975), 27–31.

    Google Scholar 

  36. Neyman, J., ‘On the Two Different Aspects of the Representative Method’, J. Royal Stat. Soc. 97 (1934), 558–625. (Spanish version of this paper appeared in Estadistica, J. Inter-American Stat. Inst. 17 (1959), 587–651.)

    Google Scholar 

  37. Hansen, M. H. and Madow, W. G., ‘Some Important Events in the Historical Development of Sample Surveys’, in On the History of Statistics and Probability (ed. by D. B. Owen), Marcel Dekker, New York, 1976, pp. 73–102.

    Google Scholar 

  38. Robbins, H., ‘An Empirical Bayes' Approach to Statistics’, in Proc. Third Berkeley Symp. Math. Stat. and Prob., Vol. 1, University of California Press, Berkeley, 1956, pp. 157–164.

    Google Scholar 

  39. Neyman, J., ‘Two Breakthroughs in the Theory of Statistical Decision Making’, Rev. of the Intern. Stat. Inst. 30 (1962), 11–27. (In Spanish in Estadistica Espanola 18 (1963), 5–28; in Russian in Matematika 2 (1965), 113–132; in Bulgarian in Phys. Math. Journ., Bulgarian Acad. Sci. 10 (1967), 94–110.)

    Google Scholar 

  40. Neyman, J., ‘Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability’, Philosophical Transactions of the Royal Society of London 236 (1937), 333–380.

    Google Scholar 

  41. Neyman, J., ‘L'estimation Statistique Traitée comme un Problème Classique de Probabilité’, Actualities Scientifiques et Industrielles 739 (1938), 25–57. (Russian version of this paper appeared in Uspehi Matematicheskih Nauk 10 (1944), 207–229.)

    Google Scholar 

  42. Neyman, J., ‘Foundation of the General Theory of Statistical Estimation’, Actualities Scientifiques et Industrielles 1146 (1951), 83–95.

    Google Scholar 

  43. Hotelling, H. and Working, H., ‘Applications of the Theory of Errors to the Interpretation of Trends’, J. American Statistical Association 24 (1929), 73–85.

    Google Scholar 

  44. Hotelling, H., ‘The Generalization of Student's Ratio’, Annals of Math. Stat. 2 (1931), 360–378.

    Google Scholar 

  45. Scheffé, H., ‘A Method for Judging All Contrasts in the Analysis of Variance’, Biometrika 40 (1953), 87–104.

    Google Scholar 

  46. Miller, R. G., Simultaneous Statistical Inference, McGraw-Hill, New York, 1966.

    Google Scholar 

  47. Pytkowski, W., The Dependence of Income of Small Farms Upon Their Area, Outlay and Capital Invested in Cows, Biblioteka Pulawska, Warsaw, 1932.

    Google Scholar 

  48. Neyman, J. and Scott, E. L., ‘Field Galaxies and Cluster Galaxies: Abundances of Morphological Types and Corresponding Luminosity Functions’, in Confrontation of Cosmological Theories with Observational Data (ed. by M. S. Longair), D. Reidel Publishing Co., Dordrecht, 1974, pp. 129–140.

    Google Scholar 

  49. Neyman, J. and Puri, P., ‘A Structural Model of Radiation Effects in Living Cells’, Proceedings U.S. Nat. Acad. Sci. 73 (1976), 3360–3363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The present paper was prepared using the facilities provided by three grants: the U.S. Energy Research and Development Agency; the National Institutes of Health, research grant No. ESO1299-13; the Office of Naval Research, contract No. NOOO14-75-C-0159/NRO82-230. I am indebted to Mr. Keith Sharp for performing the Monte Carlo simulation experiment which produced Figures 5 and 6.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neyman, J. Frequentist probability and frequentist statistics. Synthese 36, 97–131 (1977). https://doi.org/10.1007/BF00485695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00485695

Keywords

  • Frequentist Statistic
  • Frequentist Probability