Synthese

, Volume 60, Issue 2, pp 253–282 | Cite as

Realizability and intuitionistic logic

  • J. Diller
  • A. S. Troelstra
Article

Keywords

Intuitionistic Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aczel, P. H. G.: 1980, ‘The Type Theoretic Interpretation of Constructive Set Theory, in A. Macintyre, L. Pacholski, and J. Paris (eds), Logic Colloquium 77, North-Holland Publ. Co., Amsterdam, pp. 55–66.Google Scholar
  2. Beeson, M.: 1979, ‘Goodman's Theorem and Beyond’, Pacific Journal of Mathematics 84, 1–16.Google Scholar
  3. Beeson, M.: 1979A, ‘A Theory of Constructions and Proofs’. Preprint no. 134, Department of Mathematics, Utrecht University.Google Scholar
  4. Beeson, M.: 1980, ‘Recursive Models for Constructive Set Theories’. Preprint 129, Department of Mathematics, Utrecht University.Google Scholar
  5. Bruijn, N. G. de: 1970, ‘The Mathematical Language AUTOMATH, Its Usage, and Some of Its Extensions’, in M. Laudet, D. lacombe, L. Nolin, and M. Schützenberger (eds), Symposium on Automatic Demonstration, Springer Verlag, Berlin, pp. 29–61.Google Scholar
  6. Celluci, C.: 1981, ‘A Calculus of Constructions as a Representation of Intuitionistic Logical Proofs’, in S. Bernini (ed.), Atti del congresso nazionale di logica, Montecatini Terme, 1–5 ottobre 1979, Bibliopolis, Napoli, pp. 175–193Google Scholar
  7. Curry, H. B., and R. Feys: 1957, Combinatory Logic I, North-Holland Publ. Co., Amsterdam.Google Scholar
  8. Diller, J.: 1980, ‘Modified Realisation and the Formulae-as-Types Notion’, in J. P. Seldin, J. R. Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, New York, pp. 491–501.Google Scholar
  9. Dummett, M. A. E.: 1977, Elements of Intuitionism, Clarendon Press, Oxford.Google Scholar
  10. Feferman, S.: 1975, ‘A Language and Axioms for Explicit Mathematics’, in J. Crossley (ed.), Algebra and Logic, Springer, Berlin, pp. 87–139.Google Scholar
  11. Feferman, S.: 1979, ‘Constructive Theories of Functions and Classes’, in M. Boffa, D. van Dalen and K. McAloon (eds.), Logic Colloquium 78, North-Holland, Amsterdam, pp. 159–224.Google Scholar
  12. Gödel, K.: 1958, ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica 12, 280–287.Google Scholar
  13. Goodman, N.: 1970, ‘A Theory of Constructions Equivalent to Arithmetic’, in A. Kino, J. Myhill and R. E. Vesley (eds.), Intuitionism and Proof Theory, North-Holland Publ. Co., Amsterdam, pp. 101–120.Google Scholar
  14. Hilbert D., and P. Bernays: 1934, Grundlagen der Mathematik I, Springer-Verlag, Berlin, 19682.Google Scholar
  15. Heyting, A.: 1934, Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Springer, Berlin. Reprinted 1974.Google Scholar
  16. Heyting, A.: 1956, Intuitionism, An Introduction, North-Holland Publ. Co., Amsterdam, 19662, 19713.Google Scholar
  17. Heyting, A.: 1958, ‘Intuitionism in Mathematics’, in R. Klibansky (ed.) Philosophy in the Mid-century. A Survey, La nuova editrice, Firenza, pp. 101–115.Google Scholar
  18. Heyting, A.: 1974, ‘Intuitionistic Views on the Nature of Mathematics’, Bolletino dell' Unione Mathematica Italiana (4)9, Supplemento, 122–134. Also in Synthese 27 1974, 79–81.Google Scholar
  19. Howard, W. A.: 1980, ‘The Formulae-As-Types Notion of Construction’, in J. P. Seldin, and J. R. Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, London-New York, pp. 479–490.Google Scholar
  20. Kleene, S. C.: 1945, ‘On the Interpretation of Intuitionistic Number Theory’, J. Symbolic Logic 10, 109–124.Google Scholar
  21. Kleene, S. C.: 1960, ‘Realizability and Šanin's Algorithm for the Constructive Deciphering of Mathematical Sentences’, Logique et Analyse 3, 154–165.Google Scholar
  22. Kleene, S. C. and R. E. Vesley: 1965, The Foundations of Intuitionistic Mathematics, North-Holland Publ. Co. Amsterdam.Google Scholar
  23. Kleene, S. C.: 1973, ‘Realizability: A Retrospective Survey’, in A. R. D. Mathias and H. Rogers (eds.), Cambridge Summer School in Mathematical Logic, Springer, Berlin, pp. 95–112.Google Scholar
  24. Kolmogorov, A. N.: 1932, ‘Zur Deutung der intuitionistischen Logik’, Math. Zeitschrift 35, 58–65.Google Scholar
  25. Kreisel, G.: 1965, ‘Mathematical Logic’ in T. L. Saaty (ed.), Lectures on Modern Mathematics III, John Wiley & Sons, New York, pp. 95–195.Google Scholar
  26. Kreisel, G.: 1970, ‘Church's Thesis: A Kind of Reducibility Axiom for Constructive Mathematics’, in A. Kino, J. Myhill and R. E. Vesley (eds.), Intuitionism and Proof Theory, North-Holland, Amsterdam, pp. 121–150.Google Scholar
  27. Kreisel, G.: 1971, ‘A Survey of Proof Theory II’, in J. E. Fendstad (ed.), Proceedings of the Second Scandinavian Logic Symposium, North-Holland, Amsterdam, pp. 109–170.Google Scholar
  28. Läuchli, H.: 1970, ‘An Abstract Notion of Realizability for Which Intuitionistic Predicate Calculus is Complete’, in A. Kino, J. Myhill, and R. E. Vesley (eds.), Intuitionism and Proof theory, North-Holland Publ. Co., Amsterdam, pp. 227–234.Google Scholar
  29. Martin-Löf, P.: 1975, ‘An intuitionistic Theory of Types: Predicative Part’, in H. E. Rose and J. C. Shepherdson (eds.), Logic colloquium '73, North-Holland Publ. Co., Amsterdam, pp. 73–118.Google Scholar
  30. Martin-Löf, P: 1975A, ‘About Models for Intuitionistic Type Theories and the Notion of Definitional Equality’, in S. Kanger (ed.) Proceedings of the Third Scandinavian Logic Symposium, North-Holland Publ. Co., Amsterdam, pp. 81–109.Google Scholar
  31. Martin-Löf, P.: 1982, ‘Constructive Mathematics and Computer Programming’. Reports of the Dept. of Mathematics, University of Stockholm, 1979, no. 11. Appeared in L. S. Cohen, J. Los, H. Pfeiffer and K. P. Podewski (eds.), Logic, Methodology and Philosophy of Science VI, North-Holland Publ. Co., Amsterdam, pp. 153–175.Google Scholar
  32. Pitts, A. M.: 1981, ‘The Theory of Triposes’, Ph.D. thesis, Cambridge University, U.K.Google Scholar
  33. Šanin, N. A.: 1958, ‘On the Constructive Interpretation of Mathematical Judgments’, Trudy Mat. Inst. Steklov 52, 226–311 (Russian). English translation: Am. Math. Soc. Transl. (2) 23 (1963), 109–189.Google Scholar
  34. Scott, D. A.: 1970, ‘Constructive Validity’, in M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger (eds.), Symposium on Automatic Demonstration, Springer Verlag, Berlin, pp. 237–275.Google Scholar
  35. Sundholm, G.: 1983, ‘Constructions, Proofs and the Meaning of Logical Constants’, J. Philosophical Logic 12, 151–172.Google Scholar
  36. Troelstra, A. S.: 1973, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Springer, Berlin, Ch. I–IV.Google Scholar
  37. Troelstra, A. S.: 1977, ‘A Note on Non-extensional Operations in Connection with Continuity and Recursiveness’, Indag. Math, 39, 455–462.Google Scholar
  38. Troelstra, A. S.: 1980, ‘The Interplay between Logic and Mathematics: Intuitionism’, in E. Agazzi (ed.), Modern Logic — A Survey, D. Reidel, Dordrecht, pp. 197–221.Google Scholar
  39. van Dalen, D.: 1973, ‘Lectures on Intuitionism’, in A. R. D. Mathias and H. Rogers (eds.), Cambridge Summer School in Mathematical Logic. Springer, Berlin, pp. 1–94.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • J. Diller
    • 1
    • 2
  • A. S. Troelstra
    • 1
    • 2
  1. 1.Institut für Mathematische Logik44 Münster i. Wf.Federal Republic of Germany
  2. 2.Mathematisch InstituutAmsterdamThe Netherlands

Personalised recommendations