, Volume 33, Issue 1, pp 419–453 | Cite as

Algebraic representation in the physical and behavioral sciences

  • J. O. Ramsay


Behavioral Science Algebraic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aczél, J., ‘Quasigroups, Nets, and Nomograms’, Advances in Mathematics 1 (1965), 383–450.Google Scholar
  2. Aczél, J., Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.Google Scholar
  3. Birkhoff, G., Hydrodynamics. A Study in Logic, Fact and Similitude. Princeton University Press, Princeton, 1950.Google Scholar
  4. Bruck, R. H., A Survey of Binary Systems, Springer-Verlag, New York, 1971.Google Scholar
  5. Campbell, N. R., An Account of the Principles of Measurement and Calculation, Longmans, Green, London, 1928.Google Scholar
  6. Cantor, G. ‘Beiträge zur Begründung der transfiniten Mengenlehre’, Math. Ann. 46 (1895), 481–512.Google Scholar
  7. Causey, R. L., ‘Derived Measurement, Dimensions, and Dimensional Analysis’, Philosophy of Science 36 (1969), 252–270.Google Scholar
  8. Debreu, G., ‘Topological Methods in Cardinal Utility Theory’, in K. J. Arrow, S. Karlin, & P. Suppes (eds.), Mathematical methods in the social sciences, Stanford University Press, Stanford, 1960, 16–26.Google Scholar
  9. Ellis, B., Basic Concepts of Measurement, Cambridge University Press, London, 1966.Google Scholar
  10. Evans, T., A Condition for a Group to be Commutative’, Amer. Math. Monthly 68 (1961), 898–899.Google Scholar
  11. Fourier, J. B. J., Theorie analytique de la chaleur, Gauthier-Villars, Paris, 1822.Google Scholar
  12. Fuchs, L., Partially Ordered Algebraic Systems, Addison-Wesley, Reading, 1963.Google Scholar
  13. Guildford, J. P., Physchometric Methods, McGraw-Hill, New York, 1954.Google Scholar
  14. Hartman, P. A., ‘Integrally Closed and Complete Ordered Quasigroups and Loops’, Proc. Amer. Math. Soc. 33 (1972), 250–256.Google Scholar
  15. Helmholtz, H. V., ‘Zählen und Messen erkenntnis-theorisch betrachet’, Philosophische Aufsätze Eduard Zeller gewidmet, Leipzig, 1887.Google Scholar
  16. Hölder, O., Die Axiome der Quantität und die Lehre Vom Mass’, Ber. Verh. Kgl. Sächsis. Ges. Wiss. Leipzig. Math.-Phys. Classe 53 (1901), 1–64.Google Scholar
  17. Krantz, D. H., Luce, R. D., Suppes, P. & Tversky, A., Foundations of Measurement. Vol., Academic Press, New York, 1971.Google Scholar
  18. Pfanzagl, J., Theory of Measurement, Wiley, New York, 1968.Google Scholar
  19. Suppes, P. & Zinnes, J., ‘Basic Measurement Theory’, in R. D. Luce, R. R. Bush, & E. Galanter (eds.), Handbook of Mathematical Psychology. Vol., Wiley, New York, 1963.Google Scholar
  20. Thun, R. E., ‘On Dimensional Analysis’, IMB J. Res. Develop. 4 (1960), 349–356.Google Scholar

Copyright information

© D. Reidel Publishing Company 1976

Authors and Affiliations

  • J. O. Ramsay
    • 1
  1. 1.McGill UniversityCanada

Personalised recommendations