Biochemical Genetics

, Volume 14, Issue 11–12, pp 1019–1039 | Cite as

Genetic control of soluble NDA-dependent sorbitol dehydrogenase in Drosophila melanogaster

  • William L. Bischoff
Article

Abstract

Experiments utilizing standard techniques of cell fractionation and disc electrophoresis have revealed the presence of three distinctly different enzymes which catalyze the oxidation of d-sorbitol in crude extracts of Drosophila melanogaster adults. These include (1) a soluble NAD-dependent sorbitol dehydrogenase (NAD-SoDHs), (2) a mitochondrial NAD-dependent sorbitol dehydrogenase (NAD-SoDHm), and (3) a soluble NADP-dependent sorbitol dehydrogenase (NADP-SoDH). The structural gene for NAD-SoDHs has been mapped to a locus between 65.3 and 65.6 on the third chromosome by means of an electrophoretic variant and a low-activity allele. Through the use of segmental aneuploidy, this gene has been localized to the region limited by salivary bands 91B–93F. Because mutants which alter either the activity or electrophoretic mobility of the soluble NAD-dependent enzyme have no significant measurable effect on the mitochondrial or NADP-dependent forms, it is suggested that the enzymes in this system are coded for autonomously by different genes.

Key words

sorbitol dehydrogenases polyols Drosophila spermatogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bewley, G. C., and Lucchesi, J. C. (1975). Lethal effects of low and “null” activity alleles of 6-phosphogluconate dehydrogenase in Drosophila melanogaster. Genetics 79451.Google Scholar
  2. Bischoff, W. L. (1974). Developmental studies on sorbitol dehydrogenase of Drosophila melanogaster. Genetics 77:S5.Google Scholar
  3. Bischoff, W. L. (1975a). Polyol metabolism during development in Drosophila melanogaster. Genetics 80:S14.Google Scholar
  4. Bischoff, W. L. (1975b). Preliminary characterization of the NAD and NADP-dependent sorbitol dehydrogenases of Drosophila melanogaster. Submitted for publication.Google Scholar
  5. Bishop, D. W. (1968a). Testicular enzymes as fingerprints in the study of spermatogenesis. In Diamond, M. (ed.), Reproduction and Sexual Behavior, Indiana University Press, Bloomington, pp. 261–286.Google Scholar
  6. Bishop, D. W. (1968b). Sorbitol dehydrogenase in relation to spermatogenesis and fertility. J. Reprod. Fertil. 17410.Google Scholar
  7. Courtright, J. B., Imberski, R. B., and Ursprung, H. (1966). The genetic control of alcohol dehydrogenase and octanol dehydrogenase isozymes in Drosophila. Genetics 541251.Google Scholar
  8. Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum protein. Ann. N.Y. Acad. Sci. 121404.Google Scholar
  9. Dickinson, W. J. (1975). A genetic locus affecting the developmental expression of an enzyme in Drosophila melanogaster. Dev. Biol. 42131.Google Scholar
  10. Dickinson, W. J., and Sullivan, D. T. (1975). Gene-enzyme systems in Drosophila. In Beermann, W., Reinert, J., and Ursprung, H. (eds.), Results and Problems in Cell Differentiation, Springer-Verlag, New York.Google Scholar
  11. Glassman, E., and Mitchell, H. K. (1959). Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44153.Google Scholar
  12. Lehmann, V. V., and Braundau, H. (1970). Verteilungsmuster von Dehydrogenasen des Glucose- und Fructose-stoffwechels in Samenkanalchen des Rattenhodens. Acta Histochem. 3518.Google Scholar
  13. Lin, C. C., Schipmann, G., Kittrell, W., and Ohno, S. (1969). The predominance of heterozygotes found in wild goldfish of Lake Erie at the gene locus for sorbitol dehydrogenase. Biochem. Genet. 3603.Google Scholar
  14. Lindsley, D. L., and Grell, E. H. (1967). The genetic variations of Drosophila melanogaster. Carnegie Inst. (Wash.) Publ., No. 627.Google Scholar
  15. Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A., Miklos, G. L. G., Davis, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Perry, D. M., and Gould-Somero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71157.Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193267.Google Scholar
  17. McReynolds, M. S., and Kitto, G. B. (1970). Purification and properties of Drosophila malate dehydrogenases. Biochim. Biophys. Acta 198165.Google Scholar
  18. O'Brien, S. J., and Gethmann, R. C. (1973). Segmental aneuploidy as a probe for structural genes in Drosophila: Mitochondrial membrane enzymes. Genetics 75155.Google Scholar
  19. O'Brien, S. J., and MacIntyre, R. J. (1972a). The α-glycerolphosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects. Biochem. Genet. 7141.Google Scholar
  20. O'Brien, S. J., and MacIntyre, R. J. (1972b). The α-glycerolphosphate cycle in Drosophila melanogaster. II. Genetic aspects. Genetics 71127.Google Scholar
  21. Ornstein, L. (1964). Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121321.Google Scholar
  22. Patel, N., and Schneiderman, H. A. (1969). The effects of perfusion on the synthesis and release of blood proteins by diapausing pupae of the Cecropia silkworm. J. Insect. Physiol. 15643.Google Scholar
  23. Ursprung, H. (1961). Weitere Untersuchungen zu Komplementaritat und Nicht-Autonomie der Augenfarb-Mutantem ma-1 und ma-1 bzvon Drosophila melanogaster. Z. Verebungsl. 92119.Google Scholar
  24. Yen, T. T., and Glassman, E. (1965). Electrophoretic variants of xanthine dehydrogenase in Drosophila melanogaster. Genetics 52977.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • William L. Bischoff
    • 1
  1. 1.Department of BiologyUniversity of ToledoToledo

Personalised recommendations