Synthese

, Volume 29, Issue 1–4, pp 187–201 | Cite as

Towards a revised probabilistic basis for quantum mechanics

  • Terrence L. Fine
Part II/Probability

Keywords

Quantum Mechanic Probabilistic Basis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthurs, E. and Kelly, J. L., Jr., ‘On the Simultaneous Measurement of a Pair of Conjugate Observables’, Bell Systems Technical Journal 44 (1965), 725–729.Google Scholar
  2. Benioff, P., ‘Some Aspects of the Relationship Between Mathematical Logic and Physics, I’, Journal of Mathematical Physics 11 (1970), 2553–2569.Google Scholar
  3. Benioff, P., ‘Some Aspects of the Relationship Between Mathematical Logic and Physics, II’, Journal of Mathematical Physics 12 (1971), 360–376.Google Scholar
  4. Birkhoff, G. and von Neumann, J., ‘The Logic of Quantum Mechanics’, Annals of Mathematics 37 (1936), 823–843.Google Scholar
  5. Born, M., ‘Zur Quantenmechanik den Stosvorgange’, Zeitschrift für Physik 37 (1926), 865.Google Scholar
  6. Born, M., Natural Philosophy of Cause and Chance, Dover, New York, 1964.Google Scholar
  7. Born, M., Born-Einstein Letters, Walker, New York, 1971.Google Scholar
  8. Einstein, A., Podolsky, B., and Rosen, N., ‘Can Quantum-Mechanical Description of Physical Reality Be Considered Complete’, Physical Review 47 (1935), 777–780.Google Scholar
  9. Feynman, R., Leighton, R., and Sands, M., The Feynman Lectures on Physics, I, Addison-Wesley, Reading, Mass., 1963.Google Scholar
  10. Fine, T., Theories of Probability, Academic Press, New York, 1973.Google Scholar
  11. Foulis, D. J. and Randall, C. H., ‘Operational Statistics’, Journal of Mathematical Physics 13 (1972), 1667–1675.Google Scholar
  12. Gordon, J. P. and Louisell, W. H., ‘Simultaneous Measurement of Noncommuting Observables’, in P. L. Kelley, B. Lax, and P. E. Tannewald (eds.), Physics of Quantum Electronics, McGraw-Hill, New York, 1966.Google Scholar
  13. Helstrom, C. W. and Kennedy, R. S., ‘Noncommuting Observables in Quantum Detection and Estimation Theory’, IEEE Transactions on Information Theory IT-20 (1974), 16–24.Google Scholar
  14. Jammer, M., The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York, 1966.Google Scholar
  15. Jauch, J. M., Foundations of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1968.Google Scholar
  16. Kaplan, M. A., Extensions and Limits of Comparative Probability Orders, Unpublished Ph.D. dissertation, Cornell University, Ithaca, N. Y., 1973.Google Scholar
  17. Kolmogorov, A., Foundations of the Theory of Probability, Chelsea, New York, 1956.Google Scholar
  18. Kraft, C., Pratt, J., and Seidenberg, A., ‘Intuitive Probability of Finite Sets’, Annals of Mathematical Statistics 30 (1959), 780–786.Google Scholar
  19. Krantz, D., Luce, R., Suppes, P., and Tversky, A., Foundations of Measurement, I, Academic Press, New York, 1971.Google Scholar
  20. Messiah, A., Quantum Mechanics, North-Holland, Amsterdam, 1962.Google Scholar
  21. Popper, K., ‘The Propensity Interpretation of Probability’, British Journal of Philosophical Science 10 (1959), 25–42.Google Scholar
  22. Renyi, A., Foundations of Probability, Holden-Day, San Francisco, 1970.Google Scholar
  23. She, C. Y. and Heffner, H., ‘Simultaneous Measurement of Noncommuting Observables’, Physical Review 152 (1966), 1103–1110.Google Scholar
  24. Suppes, P., ‘Probability Concepts in Quantum Mechanics’, Philosophy of Science 28 (1961), 378–389.Google Scholar
  25. Suppes, P., ‘The Probabilistic Argument for a Non-Classical Logic of Quantum Mechanics’, Philosophy of Science 33 (1966), 14–21.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • Terrence L. Fine
    • 1
  1. 1.Cornell UniversityUSA

Personalised recommendations