Advertisement

Biochemical Genetics

, Volume 20, Issue 1–2, pp 1–15 | Cite as

Isozyme expression in F1 hybrids between carp and goldfish

  • Roy G. Danzmann
  • Norman E. Down
Article

Abstract

Interspecific genetic differences in malate dehydrogenase (MDH), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and esterase (EST) isozymes in carp (Cyprinus carpio) and goldfish (Carassius auratus) were used to examine the allelic expressions in the hybrid between these species. A unique liver SOD and muscle LDH phenotype unambiguously identifies all presumed hybrid individuals. There was no evidence of F2 or backcross phenotypes in hybrid individuals. Liver MDH and EST phenotypes in hybrids show a preferential expression of goldfish isozymes. Variation in the levels of carp liver MDH isozymes may result from the polymorphism of a regulatory mutation affecting isozyme expression, leading to gene silencing after duplication.

Key words

carp goldfish hybrids electrophoresis gene silencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendorf, F. W. (1975). Genetic Variability in a Species Possessing Extensive Gene Duplication: Genetic Interpretation of Duplicate Loci and Examination of Genetic Variation in Populations of Rainbow Trout PhD thesis, University of Washington, Seattle.Google Scholar
  2. Allendorf, F. W., Utter, F. M., and May, B. P. (1975). Gene duplication in the family Salmonidae. II. detection and determination of the genetic control of duplicate loci through inheritance studies and the examination of populations. In Markert, C. L. (ed.), Isozymes, Vol. 4. Genetics and Evolution Academic Press, New York, pp. 415–432.Google Scholar
  3. Bailey, G. S., Wilson, A. C., Halver, J. E., and Johnson, C. L. (1970). Multiple forms of supernatant malatc dehydrogenase in salmonid fishes: Biochemical, immunological, and genetic studies. J. Biol. Chem. 2455927.Google Scholar
  4. Bender, K., and Ohno, S. (1968). Duplication of the autosomally inherited 6-phosphogluconate dehydrogenase gene locus in tetraploid species of Cyprinid fish. Biochem. Genet. 2101.Google Scholar
  5. Engel, W., Schmidtke, J., and Wolf, U. (1973). Genetic polymorphism of lactate dehydrogenase isoenzymes in the carp (Cyprinus carpio) apparently due to a “null allele.” Biochem. Genet. 8281.Google Scholar
  6. Engel, W., Schmidtke, J., and Wolf, U. (1975). Diploid-tetraploid relationships in teleostean fishes. In Markert, C. L. (ed.), Isozymes, Vol. 4. Genetics and Evolution Academic Press, New York, pp. 449–462.Google Scholar
  7. Ferris, S. D., and Whitt, G. S. (1977a). Loss of duplicate gene expression after polyploidization. Nature 265258.Google Scholar
  8. Ferris, S. D., and Whitt, G. S. (1977b). The evolution of duplicate gene expression in the carp (Cyprinus carpio). Experientia 331299.Google Scholar
  9. Ferris, S. D., and Whitt, G. S. (1979). Evolution of the differential regulation of duplicate genes after polyploidization. J. Mol. Evol. 12267.Google Scholar
  10. Johnson, G. B. (1976). Hidden alleles at the alpha-glycerophosphate dehydrogenase locus in Colias butterflies. Genetics 83149.Google Scholar
  11. Klose, J., Wolf, U., Hitzeroth, H., Ritter, H., and Ohno, S. (1969). Polyploidization in the fish family Cyrpinidae, Order Cypriniformes. Humangenetik 7245.Google Scholar
  12. MacKay, H. H. (1963). Fishes of Ontario Ontario Department of Lands & Forests, Ontario.Google Scholar
  13. McCrimmon, H. R. (1968). Carp in Canada. Fish. Res. Bd. (Canada) Bull. 165.Google Scholar
  14. Quiroz-Gutierrez, A., and Ohno, S. (1970). Evidence of gene duplication for S-form of NADP-linked isocitrate dehydrogenase in carp and goldfish. Biochem. Genet. 493.Google Scholar
  15. Schmidtke, J., and Engel, W. (1972). Duplication of the gene loci coding for the supernatant aspartate amino-transferase by polyploidization in the fish family Cyprinidae. Experientia 28976.Google Scholar
  16. Schultz, R. J. (1973). Unisexual fish: Laboratory synthesis of a “species.” Science 179180.Google Scholar
  17. Scott, W. B., and Crossman, E. J. (1973). Freshwater fishes of Canada. Fish. Res. Bd. (Canada) Bull. 184.Google Scholar
  18. Selander, R. K., Smith, M. K., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse. Studies in Genetics VI. Univ. Tex. Publ. 7103.Google Scholar
  19. Shaklee, J. B., Kepes, K. L., and Whitt, G. S. (1973). Specialized lactate dehydrogenase isozymes: The molecular and genetic basis for the unique eye and liver LDHs of teleost fishes. J. Exp. Zool. 185217.Google Scholar
  20. Singh, R. S. (1979). Genic heterogeneity within electrophoretic “alleles” and the pattern of variation among loci in Drosophila pseudobscura. Genetics 93997.Google Scholar
  21. Sonstegard, R. A. (1977). Environmental carcinogensis studies in fishes of the Great Lakes of North America. Ann. N.Y. Acad. Sci. 298261.Google Scholar
  22. Sonstegard, R. A., Leatherland, J. F., and Dawe, C. J. (1976). Effects of gonadal tumors on the pituitary gonadal axis in cyprinids from the Great Lakes. J. Gen. Comp. Endocrinol. 29269.Google Scholar
  23. Stanley, J. G. (1976). Production of hybrid, androgenic, and gynogenetic grass carp and carp. Trans. Am. Fish. Soc. 10510.Google Scholar
  24. Stanley, J. G., Biggers, C. J., and Schultz, D. E. (1976). Isozymes in androgenic and gynogenetic white amur, genogenetic carp, and carp-amur hybrids. J. Hered. 67129.Google Scholar
  25. Taylor, J., and Mahon, R. (1977). Hybridization of Cyprinus carpio and Carassius auratus, the first two exotic species in the lower laurentian great lakes. Env. Biol. Fish. 1205.Google Scholar
  26. Trautman, M. B. (1957). The Fishes of Ohio Ohio State University Press, Columbus.Google Scholar
  27. Utter, F. M., Hodgins, H. O., and Allendorf, F. W. (1974). Biochemical genetic studies of fishes: Potentialities and limitations. In Malins, P. C., and Sargent, J. R. (eds.), Biochemical and Biophysical Perspectives in Marine Biology, Vol. 1 Academic Press, New York.Google Scholar
  28. Whitt, G. S., Cho, P. L., and Childers, W. E. (1972). Preferential inhibition of allelic isozyme synthesis in an interspecific sunfish hybrid. J. Exp. Zool. 179271.Google Scholar
  29. Whitt, G. S., Childers, W. F., and Cho, P. L. (1973). Allelic expression at enzyme loci in an intertribal hybrid sunfish. J. Hered. 6455.Google Scholar
  30. Wilson, A. C., Maxson, L. R., and Sarich, V. M. (1974a). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. Natl. Acad. Sci. USA 712843.Google Scholar
  31. Wilson, A. C., Sarich, V. M., and Maxson, L. R. (1974b). The importance of gene arrangement in evolution. Evidence from studies on rates of chromosomal, protein and anatomical evolution. Proc. Natl. Acad. Sci. USA 713028.Google Scholar
  32. Wilson, F. R., Whitt, G. S., and Prosser, C. L. (1973). Lactate dehydrogenase and malate dehydrogenase isozyme patterns in tissues of temperature acclimated goldfish. (Carassius auratus L.). Comp. Biochem. Physiol. 46B105.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Roy G. Danzmann
    • 1
  • Norman E. Down
    • 1
  1. 1.Department of Zoology, College of Biological ScienceUniversity of GuelphGuelphCanada

Personalised recommendations