Biochemical Genetics

, Volume 14, Issue 1–2, pp 27–45 | Cite as

Polymorphism of transferrin in carp (Cyprinus carpio L.): Genetic determination, isolation, and partial characterization

  • M. Valenta
  • A. Stratil
  • V. Slechtová
  • L. Kálal
  • V. Šlechta


Seven transferrin variants (A, B, C, D, E, F, and G) have been found in carp sera (Cyprinus carpio L.). Genetic analysis involves five variants and agrees with the hypothesis of simple codominant autosomal inheritance at one transferrin (Tf) locus in spite of the fact that the carp is a tetraploid in relation to other species of the same family. Carp populations from three regions were studied which differed in gene frequencies. Individual populations were in Hardy—Weinberg equilibrium. The polymorphism of carp transferrins can be used for the identification of offspring of single parent pairs, stocked in one pond. Transferrins have been isolated and characterized. Homozygous phenotypes comprised four iron-binding components differing in electrophoretic mobility. This heterogeneity is not caused by sialic acid, which is absent. Amino acid composition, content of hexoses (1 mole/mole of protein) and hexosamines (1 mole/mole of protein), molecular weight (70,000), and the isoelectric point (5.0) have been determined. No N-terminal amino acid could be detected.

Key words

carp transferrin polymorphism genetic determination transferrin heterogeneity transferrin characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen, P., Leibman, A., and Sia, C.-L. (1972). Molecular weight and subunit structure of hagfish transferrin. Biochemistry 113461.Google Scholar
  2. Aminoff, D. (1961). Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem. J. 81384.Google Scholar
  3. Andrews, P. (1964). Estimation of the molecular weights of proteins by Sephadex gelfiltration. Biochem. J. 91222.Google Scholar
  4. Andrews, P. (1965). The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96595.Google Scholar
  5. Balakhnin, I. A., and Galagan, N. P. (1972). Distribution and surviving of the individuals with different transferrin types in the various carp crossings. Gidrobiol. Zh. 856 (Russian).Google Scholar
  6. Benson, J. V., Jr., and Patterson, J. A. (1965). Accelerated automatic chromatographic analysis of amino acids on a spherical resin. Anal. Chem. 371108.Google Scholar
  7. Boffa, G. A., Faure, A., Got, R., Drilhon, A., and Fine, J. M. (1966). Sur les caractères physico-chimiques des transferrines sériques de la lamproie (Cyclostome) et de la roussette (Sélacien). In Peeters, H. (ed.), Protides of the Biological Fluids, Vol. 14, Elsevier, Amsterdam, pp. 97–102.Google Scholar
  8. Brummerstedt-Hansen, E. (1967). The Serum Proteins of the Pig: An Immunoelectrophoretic Study, Munksgaard, Copenhagen, pp. 38–41.Google Scholar
  9. Creyssel, R., Silberzahn, P., Richard, G., and Manuel, Y. (1964). Étude du sérum de carpe (Cyprinus carpio) par électrophorèse en gel d'amidon. Bull. Soc. Chim. Biol. 46149.Google Scholar
  10. Creyssel, R., Richard, G. B., and Silberzahn, P. (1966). Transferrin variants in carp serum. Nature 2125068.Google Scholar
  11. de Ligny, W. (1968). Ontogenic changes of serum transferrins in plaice. In Proceedings of the Eleventh European Conference on Animal Blood Groups and Biochemical Polymorphism, P.W.N., Warsaw, pp. 527–531.Google Scholar
  12. Edman, P. (1950). Preparation of phenyl thiohydantoins from some natural amino acids. Acta Chem. Scand. 4277.Google Scholar
  13. Ferguson, K. A., and Wallace, A. L. C. (1961). Starch-gel electrophoresis of anterior pituitary hormones. Nature 190629.Google Scholar
  14. Got, R., Font, J., and Goussault, Y. (1967). Étude sur une transferrine de Sélacien, la grande roussette (Scyllium stellare). Comp. Biochem. Physiol. 23317.Google Scholar
  15. Grüner, K. (1970). Identifikace PTH-aminokyselin chromatografil na tenkých vrstvách “Silufol.” Chem. Listy 641160 (Czech).Google Scholar
  16. Hershberger, W. K. (1970). Some physicochemical properties of transferrins in brook trout. Trans. Am. Fish. Soc. 99207.Google Scholar
  17. Hinegardner, R., and Rosen, D. E. (1972). Cellular DNA content and the evolution of teleostean fishes. Am. Naturalist 106621.Google Scholar
  18. Hudson, B. G., Ohno, M., Brockway, W. J., and Castellino, F. J. (1973). Chemical and physical properties of serum transferrins from several species. Biochemistry 121047.Google Scholar
  19. Kirpichnikov, V. S. (1973). Biochemical polymorphism and microevolution processes in fish. In Schröder, J. H. (ed.), Genetics and Mutagenesis of Fish, Springer-Verlag, Berlin, pp. 223–241.Google Scholar
  20. Klose, J., Wolf, U., Hitzeroth, H., and Ritter, H. (1969). Polyploidization in the fish family Cyprinidae, order Cypriniformes. II. Duplication of the gene loci coding for lactate dehydrogenase (E.C. and 6-phosphogluconate dehydrogenase (E.C. in various species of Cyprinidae. Humangenetik 7245.Google Scholar
  21. Manwell, C., and Baker, C. M. A. (1970). Molecular Biology and the Origin of Species: Heterosis, Protein Polymorphism and Animal Breeding, Sidgwick and Jackson, London, pp. 100–103.Google Scholar
  22. Marshall, R. D., and Neuberger, A. (1972). Qualitative and quantitative analysis of the component sugars. In Gottschalk, A. (ed.), Glycoproteins: Their Composition, Structure and Function, Part A, Elsevier, Amsterdam, pp. 224–299.Google Scholar
  23. Miller, G. L., and Golder, R. H. (1950). Buffers of pH 2 to 12 for use in electrophoresis. Arch. Biochem. 29420.Google Scholar
  24. Ohno, S., Muramoto, J., and Christian, L. (1967). Diploid-tetraploid relationship among Old-World members of the fish family Cyprinidae. Chromosoma 231.Google Scholar
  25. Palmour, R. M., and Sutton, H. E. (1971). Vertebrate transferrins: Molecular weights, chemical compositions, and iron-binding studies. Biochemistry 104026.Google Scholar
  26. Reichenbach-Klinke, H. H. (1973). Investigations on the serum polymorphism of trout and carp. In Schröder, J. H. (ed.), Genetics and Mutagenesis of Fish, Springer-Verlag, Berlin, pp. 315–318.Google Scholar
  27. Scheidegger, J. J. (1955). Une micro-méthode de l'immuno-électrophorèse. Int. Arch. Allergy Appl. Immunol. 7103.Google Scholar
  28. Schmidtke, J., and Engel, W. (1972). Duplication of the gene loci coding for the supernatant aspartate aminotransferase by polyploidization in the fish family Cyprinidae. Experientia 28 976.Google Scholar
  29. Schultze, H. E., and Heremans, J. F. (1966). Molecular Biology of Human Proteins with Special Reference to Plasma Proteins, Vol. 1: Nature and Metabolism of Extracellular Proteins, Elsevier, Amsterdam, p. 212.Google Scholar
  30. Silberzahn, P., Richard, G. B., and Creyssel, R. (1967). Isolement et étude des protéines à propriétés hémopexiques et de la transferrine du sérum de carpe (Cyprinus carpio L.). Bull. Soc. Chim. Biol. 49495.Google Scholar
  31. Spackman, D. H., Stein, W. H., and Moore, S. (1958). Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 301190.Google Scholar
  32. Spies, J. R., and Chambers, D. C. (1949). Chemical determination of tryptophan in proteins. Anal. Chem. 211249.Google Scholar
  33. Spooner, R. L., Land, R. B., Oliver, R. A., and Stratil, A. (1970). Foetal and neonatal transferrins in cattle. Anim. Blood Grps. Biochem. Genet. 1241.Google Scholar
  34. Spooner, R. L., Oliver, R. A., Richardson, N. E., Buttress, N., Feinstein, A., Maddy, A. H., and Stratil, A. (1975). Isolation and partial characterisation of sheep transferrin. Comp. Biochem. Physiol. (in press).Google Scholar
  35. Stratil, A., and Kúbek, A. (1974). Heterogeneity of pig transferrin. Int. J. Biochem. 5895.Google Scholar
  36. Stratil, A., and Spooner, R. L. (1971). Isolation and properties of individual components of cattle transferrin: The role of sialic acid. Biochem. Genet. 5347.Google Scholar
  37. Utter, F. M., Hodgins, H. O., Allendorf, F. W., Johnson, A. G., and Mighell, J. L. (1973). Biochemical variants in Pacific salmon and rainbow trout: Their inheritance and application in population studies. In Schröder, J. H. (ed.), Genetics and Mutagenesis of Fish, Springer-Verlag, Berlin, pp. 329–339.Google Scholar
  38. Valenta, M., and Kálal, L. (1968). Polymorfismus sérových transferinů u kapra obecného (Cyprinus carpio L.) a lína obecného (Tinca tinca L.). J. Univ. Agr. Prague Ser. B, pp. 93–103 (Czech).Google Scholar
  39. Valenta, M., Kálal, L., and Pavlů, V. (1972). Aktivita a isoenzymy dehydrogenázy mléčnanu a dehydrogenázy jablečnanu v tkáních kapra. Čs. Fysiol. 21484. (Czech).Google Scholar
  40. Williams, J. (1962). A comparison of conalbumin and transferrin in the domestic fowl. Biochem. J. 83355.Google Scholar
  41. Winzler, R. J. (1955). Determination of serum glycoproteins. In Glick, D. (ed.), Methods of Biochemical Analysis, Vol. II, Interscience, New York, pp. 279–311.Google Scholar
  42. Wolf, U., Ritter, H., Atkin, N. B., and Ohno, S. (1969). Polyploidization in fish family Cyprinidae, order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae. Humangenetik 7240.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • M. Valenta
    • 1
  • A. Stratil
    • 1
  • V. Slechtová
    • 1
  • L. Kálal
    • 2
  • V. Šlechta
    • 1
  1. 1.Department of Genetics, Institute of Animal Physiology and GeneticsCzechoslovak Academy of SciencesLiběchovCzechoslovakia
  2. 2.Department of ZoologyUniversity of AgriculturePraha-SuchdolCzechoslovakia

Personalised recommendations