Biochemical Genetics

, Volume 19, Issue 5–6, pp 487–498 | Cite as

α-Thalassemia and the production of different α chain variants in heterozygotes

  • A. E. Felice
  • B. B. Webber
  • T. H. J. Huisman


The production of five α chain variants (Hb G-Georgia, Hb St. Luke's, Hb Lloyd, Hb Montgomery, and Hb G-Philadelphia) in heterozygotes was evaluated through hematological observations, hemoglobin quantification, and biosynthetic studies. All heterozygotes for Hb St. Luke's and Hb Lloyd and most heterozygotes with Hb G-Georgia and Hb Montgomery had normal hematology and average σα/β values of about 1.1. They were assigned a normal genotype (ααG/αα), although the proportions of Hb St. Luke's and Hb G-Georgia were low (10 to 13%) and those of Hb Lloyd and Hb Montgomery twice as high (20%). Data from short-term incubations confirmed this genotype for some of these heterozygotes. Isolated Hb St. Luke's and Hb G-Georgia gave low αG/β values (0.2 and 0.3) indicating that these Hb variants were defective at the level of Hb assembly. Isolated Hb Montgomery and Hb G-Philadelphia, however, gave higher αG/β values of 0.6 and 0.8, respectively. A second type of variability existed among Hb G-Georgia (20 vs. 13%), Hb Montgomery (28 vs. 20%), and Hb G-Philadelphia (47 vs. 34%) heterozygotes, in whom the levels of Hb G differed. The occurrence of higher levels of these three α chain heterozygosities was associated with hematological or biosynthetic evidence of a mild or moderate α chain deficiency due to an α-thalassemia-2 heterozygosity (ααG0α or α0αG/αα) or a homozygosity (α0αG0α), respectively.

Key words

Hb α chain variants α-thalassemia Hb synthesis Hb genetics posttranslational control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, E. C., Reese, A., Stallings, M., and Huisman, T. H. J. (1977). Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaCl developers. Hemoglobin 127.Google Scholar
  2. Abramson, R. K., Rucknagel, D. L., Schreffler, D. C., and Saave, J. J. (1970). Homozygous Hb J Tongariki: evidence for only one alpha chain structural locus in Melanesians. Science 169194.Google Scholar
  3. Adams, J. G., III, Winter, W. P., Rucknagel, D. L., and Spencer, H. H. (1972). Biosynthesis of hemoglobin Ann Arbor: evidence for catabolic and feedback regulation. Science 1761427.Google Scholar
  4. Altay, C., Ringelhann, B., James, L., Gravely, M., and Huisman, T. H. J. (1977). Hemoglobin α chain deficiency in black children with variable quantities of hemoglobin Bart's at birth. Pediatr. Res. 2147.Google Scholar
  5. Anson, M. L., and Mirsky, A. E. (1930). Protein coagulation and its reversal. The preparation of insoluble globin. J. Gen. Physiol. 13469.Google Scholar
  6. Baglioni, C., and Ingram, V. M. (1961). Abnormal human haemoglobins. V. Chemical investigation of haemoglobins A, G, C, X from one individual. Biochim. Biophys. Acta 48253.Google Scholar
  7. Baine, R. M., Rucknagel, D. L., Dublin, P. A., and Adams, J. G. (1976). Trimodality in the proportion of hemoglobin G Philadelphia in heterozygotes: evidence for heterogeneity in the number of human alpha chain loci. Proc. Natl. Acad. Sci. U. S. A. 73 3633.Google Scholar
  8. Bannister, W. H., Grech, J. L., Plese, C. F., Smith, L. L., Barton, B. P., Wilson, J. B., Reynolds, C. A., and Huisman, T. H. J. (1972). Hemoglobin St. Luke's or α2 95 Arg (G2) β2. Eur. J. Biochem. 29301.Google Scholar
  9. Brimhall, B., Jones, R. T., Schneider, R. T., Hosty, R. G., Tomlin, G., and Atkins, R. (1975). Two new hemoglobins: hemoglobin Alabama (α39 (C5) Gln → Lys) and hemoglobin Montgomery (α48 (CD6) Leu → Arg). Biochim. Biophys. Acta 37928.Google Scholar
  10. Bunn, H. F., Forget, B. G. and Ranney, H. M. (1977). Hemoglobinopathies, Vol. XII, Major Problems in Internal Medicine Saunders, Philadelphia.Google Scholar
  11. Clegg, J. B., Naughton, M. A., and Weatherall, D. J. (1968). Separation of the α and β-chains of human haemoglobin. Nature 21969.Google Scholar
  12. De Jong, W. W. W., Bernini, L. F., and Meera Khan, P. (1971). Haemoglobin Rampa: α95 Pro → Ser. Biochim. Biophys. Acta 236197.Google Scholar
  13. De Simone, J., Kleve, L., and Shaeffer, J. (1974). Isolation of a reticulocyte-rich fraction from normal human blood on Renograffin gradients. J. Lab. Clin. Med. 84517.Google Scholar
  14. Felice, A. E. (1975). Hemoglobin abnormalities in the Maltese. Thesis, Royal University of Malta, Msida, Malta.Google Scholar
  15. Felice, A. E., & Huisman, T. H. J. (1979). Observations on the calculated contents of variant and normal α chains in adult and fetal erythrocytes. Hemoglobin 3475.Google Scholar
  16. Felice, A., Abraham, E. C., Miller, A., Stallings, M., and Huisman, T. H. J. (1978a). Is the trimodality of Hb Leslie (α2β2 131Gln → 0) in heterozygotes the result of a variable number of active α chain genes? Evidence for post-translational control of hemoglobin synthesis. Am. J. Hematol. 51.Google Scholar
  17. Felice, A., Abraham, E. C., Miller, A., Cope, N., Gravely, M., and Huisman, T. H. J. (1978b). Post-translational control of human hemoglobin synthesis. The number of α chain genes and the synthesis of Hb S. In Brewer, G. J. (ed.), The Red Cell Alan R. Liss, New York.Google Scholar
  18. Felice, A. E., Webber, B., Miller, A., Mayson, S., Harris, H. F., Henson, J. B., Gravely, M. E., and Huisman, T. H. J. (1979). The association of sickle cell anemia with heterozygous and homozygous α-thalassemia-2: in vitro Hb chain synthesis. Am. J. Hematol. 691.Google Scholar
  19. Felice, A. E., Mayson, S. M., Webber, B. B., Miller, A., Gravely, M. E., and Huisman, T. H. J. (1980). Hb S, Hb G-Philadelphia and α-thalassemia-2 in a black family. Pediatr. Res. 14266.Google Scholar
  20. Friedman, S., Atwater, J., and Schwartz, E. (1972). Hemoglobin Bart's and alpha thalassemia in the Negro newborn. Pediatr. Res. 6106.Google Scholar
  21. Friedman, S., Hamilton, R. M., and Schwartz, E. (1973). β-Thalassemia in the American Negro. J. Clin. Invest. 521453.Google Scholar
  22. Higgs, D. R., Old, J. M., Pressley, L., Clegg, J. B., and Weatherall, D. J. (1980). A novel α-globin gene arrangement in man. Nature 284632.Google Scholar
  23. Huisman, T. H. J. (1977). Trimodality in the percentages of β chain variants in heterozygotes: the effect of the number of Hbα structural loci. Hemoglobin 1349.Google Scholar
  24. Huisman, T. H. J., and Jonxis, J. H. P. (1977). The Hemoglobinopathies, Techniques of Identification, Vol. 6, Marcel Dekker, New York.Google Scholar
  25. Huisman, T. H. J., Adams, H. R., Wilson, J. B., Efremov, G. D., Reynolds, C. A., and Wrightstone, R. N. (1970). Hemoglobin G Georgia or α2 95 Leu (G2) β2. Biochim. Biophys. Acta 200578.Google Scholar
  26. Huisman, T. H. J., Gravely, M. E., Henson, J., Felice, A., Wilson, J. B., Abraham, E. C., Vella, F., and Little, M. W. (1978). Variability in the interaction of β-thalassemia with the α-chain variants Hb G-Philadelphia and Hb Rampa. J. Lab. Clin. Med. 92311.Google Scholar
  27. Kan, Y. W., Dozy, A. M., Varmus, H. E., Taylor, J. M., Holland, J. P., Lie-Injo, L. E., Ganesan, J., and Todd, D. (1975). Deletion of α-globin genes in haemoglobin-H disease demonstrates multiple α-globin structural loci. Nature 255255.Google Scholar
  28. Lehmann, H., and Carrell, R. W. (1968). Differences between α-and β-chain mutants of human haemoglobin and between α- and β-thalassemia. Possible duplication of the α-chain gene. Br. Med. J. 4748.Google Scholar
  29. Marinucci, N., Mavillio, F., Samoggia, P., Tentori, L., Spadea, G., and Cocone, G. (1979). Occurrence of haemoglobin Norfolk (α257(E6) Gly → Aspβ2) at the level of 33% in an Italian family from Calabria. Acta Haematol. 6139.Google Scholar
  30. Milner, P. F., and Huisman, T. H. J. (1976). Studies on the proportion and synthesis of haemoglobin G Philadelphia in red blood cells of heterozygotes, a homozygote, and a heterozygote for both haemoglobin G and α thalassemia. Br. J. Haematol. 34207.Google Scholar
  31. Old, J. M., Clegg, J. B., Weatherall, D. J., and Booth, P. B. (1978). Haemoglobin J Tongariki is associated with α thalassemia. Nature 273319.Google Scholar
  32. Orkin, S. H., Alter, B. P., Altay, C., Mahoney, M. J., Lazarus, H., Hobbins, J. C., and Nathan, D. G. (1978). Applications of endonuclease mapping to the analysis and prenatal diagnosis of thalassemias caused by globin-gene deletion. N. Eng. J. Med. 299166.Google Scholar
  33. Politis-Tsegos, C., Lang, A., Stathopoulou, R., and Lehmann, H. (1976). Is haemoglobin Gα Philadelphia linked to α-thalassemia? Human Genet. 3167.Google Scholar
  34. Rucknagel, D. L., and Winter, W. P. (1974). Duplication of structural genes for hemoglobin α and β chains in man. Ann. N. Y. Acad. Sci. 24180.Google Scholar
  35. Schroeder, W. A., Evans, L., Grussing, L., Abraham, E. C., Huisman, T. H. J., Lam, H., and Shelton, J. B. (1976). Quantitative micro-chromatographic determination of hemoglobin F in patients with hemoglobins S and/or C. Am. J. Hematol. 1331.Google Scholar
  36. Sewell, A., Millard, D., and Serjeant, G. R. (1977). The interaction of alpha thalassemia with SS disease. In Brewer, G. J. (ed.), The Red Cell Alan R. Liss, New York, p. 93.Google Scholar
  37. Shaeffer, J. R., De Simone, J., and Kleve, L. J. (1975). Hemoglobin synthesis studies of a family with α-thalassemia trait and sickle cell trait. Biochem. Genet. 13783.Google Scholar
  38. Smith, L. L., Plese, C. F., Barton, B. P., Charache, S., Wilson, J. B., and Huisman, T. H. J. (1972). Subunit dissociation of the abnormal hemoglobins G Georgia (α2 95Leu(G2)β2) and Rampa (α2 95Ser(G2)β2). J. Biol. Chem. 2471433.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. E. Felice
    • 1
  • B. B. Webber
    • 1
  • T. H. J. Huisman
    • 1
  1. 1.Department of Cell and Molecular Biology (Contribution #0591), Medical College of GeorgiaHemoglobin Research Laboratory, Veterans Administration Hospital, and Comprehensive Sickle Cell Center and Laboratory of Protein ChemistryAugusta

Personalised recommendations