Advertisement

Biochemical Genetics

, Volume 18, Issue 7–8, pp 793–808 | Cite as

Studies of primate protein variation and evolution: Microelectrophoretic detection

  • Roberta M. Palmour
  • John E. Cronin
  • Anne Childs
  • Benjamin W. Grunbaum
Article

Abstract

Genetic variation at 16 protein and enzyme loci in Cercopithecus aethiops and several other primate species has been surveyed, using cellulose acetate microelectrophoresis. Resolution of several standard variant proteins is comparable to that achieved on starch gel or polyacrylamide gel. Although both intraspecific and interspecific variation was observed for some loci, the data generally support the concept that extracellular proteins are more likely to be polymorphic within a species, while intracellular proteins generally vary between species, if at all. These methodologies are particularly appropriate for screening multiple-locus variation in large numbers of samples; their relevance to studies of molecular evolution and evaluation of theories of kin selection is discussed.

Key words

enzyme and protein variation primate genetic variation and evolution electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper, C. A., and Johnson, A. M. (1969). Immunofixation electrophoresis: A technique for the study of protein polymorphisms. Vox Sang. 17445.Google Scholar
  2. Anderson, J. E., and Giblett, E. R. (1975). Interspecific red cell enzyme variation in the pigtailed macaque (Macaca nemestrina). Biochem. Genet. 13189.Google Scholar
  3. Avise, J. C. (1976). Genetic differentiation during speciation. In Ayala, F. J. (ed.), Molecular Evolution, Sinauer Associates, Sunderland, Mass., pp. 106–122.Google Scholar
  4. Avise, J. C. (1977). Is evolution gradual or rectangular? Evidence from living fishes. Proc. Natl. Acad. Sci. 745058.Google Scholar
  5. Ayala, F. J. (1975). Genetic differentiation during the speciation process. In Dobzhansky, T., Hecht, M. K., and Steere, W. C. (eds.), Evolutionary Biology, Vol. 8, Plenum Press, New York, pp. 1–78.Google Scholar
  6. Cronin, J. E., and Meikle, W. E. (1979). The phyletic position of Theropithecus: Congruence among molecular, morphological and paleontological evidence. Syst. Zool. 28259.Google Scholar
  7. Cronin, J. E., Cann, R., and Sarich, V. M. (1980). Molecular evolution and systematics of the genus Macaca. In Lindberg, D. (ed.), The Macaques: Studies in Ecology, Behavior and Evolution, Van Nostrand Reinhold C., New York.Google Scholar
  8. Duvall, S. W., Bernstein, I. S., and Gordon, T. P. (1976). Paternity and status in a rhesus monkey group. J. Reprod. Fertil 4725.Google Scholar
  9. Gould, S. J., and Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3115.Google Scholar
  10. Grunbaum, B. W. (1975). An automatic 1–8 sample applicator for fast qualitative and quantitative microelectrophoresis of plasma proteins, hemoglobin, iso enzymes and cross-over electrophoresis. Microchem. J. 20495.Google Scholar
  11. Grunbaum, B. W. (1977). A microanalytical electrophoresis techniques for the determination of polymorphic blood proteins for medical and forensic applications. Microchm. Acta 11339.Google Scholar
  12. Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland, New York.Google Scholar
  13. Johnson, G. B. (1976). Genetic polymorphism and enzyme function. In Ayala, F. (ed.), Molecular Evolution. Sinauer Associates, Sunderland, Mass., p. 46.Google Scholar
  14. Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change, Columbia University Press, New York, p. 346.Google Scholar
  15. Nei, M. (1972). Genetic distances between populations. Am. Nat. 106283.Google Scholar
  16. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89583.Google Scholar
  17. Nevo, E. (1978). Genetic variation in natural populations: Patterns and theory. Theor. Pop. Biol. 13121.Google Scholar
  18. Ornstein, L., and Davis, B. J. (1964). Disc electrophoresis. Ann. N. Y. Acad. Sci. 121321Google Scholar
  19. Palmour, R. M., and Sutton, H. E. (1971). Vertebrate transferrins: Molecular weights, chemical compositions and iron-binding studies. Biochemistry 104026.Google Scholar
  20. Palmour, R. M., Pearce, C., and Wray, L. (1980). Pseudoisoenzymes of human erythrocytic hypoxanthine phosphoribosyltransferase. Biochemistry (in press).Google Scholar
  21. Powell, J. R. (1975). Protein variation in natural populations of animals. In Dobzhansky T., Hecht, M. K., and Steere, W. C. (eds.), Evolutionary Biology, Vol. 8, Plenum Press, New York, pp. 79–119.Google Scholar
  22. Sarich, V. M. (1977). Rates, sample sizes and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 26524.Google Scholar
  23. Sarich, V. M., and Cronin, J. E. (1976). Molecular systematics of the primates. In Goodman, and Tashian, R. (eds.), Molecular Anthropology, Plenum Press, New York, p. 141.Google Scholar
  24. Selander, R. K. (1976). Genic variation in natural populations. In Ayala, F. (ed.), Molecular Evolution, Sinauer Associates, Sunderland, Mass., p. 21.Google Scholar
  25. Sensabaugh, G. F., and Wrexall, B. G. D. (1977). On red cell acid phosphatase typing. Forensic Serol. News 36.Google Scholar
  26. Smithies, O. (1955). Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. Biochem. J. 61629.Google Scholar
  27. Sutton, H. E., and Karp, G. W. (1965). Adsorption of rivanol by potato starch in the isolation of transferrins. Biochim. Biophys. Acta 107153.Google Scholar
  28. Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man, Aldine, Chicago, p. 136.Google Scholar
  29. Wilson, E. O. (1975). Sociobiology, Belknap Press, Cambridge, Mass.Google Scholar
  30. Zagac, P. L., and Grunbaum, B. W. (1978). Problems of relability in the phenotyping of erythrocytic acid phosphatase in blood stains. J. Foren. Sci. 23615.Google Scholar
  31. Zimmerman, E. G., Kilpatrick, C. W., and Hart, B. J. (1978). The genetics of speciation in the rodent genus Peromyscus. Evolution 32565.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Roberta M. Palmour
    • 1
  • John E. Cronin
    • 2
  • Anne Childs
    • 1
  • Benjamin W. Grunbaum
    • 3
  1. 1.Department of GeneticsUniversity of CaliforniaBerkeley
  2. 2.Neuropsychiatric InstituteUniversity of CaliforniaLos Angeles
  3. 3.White Mountain Research LaboratoriesUniversity of CaliforniaUSA

Personalised recommendations