Skip to main content
Log in

Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The interspecies homology of dace supernatant (A2, AB, B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aspinwall, N. (1974). Genetic analysis of duplicate malate dehydrogenase loci in the pink salmon, Oncorhynchus gorbuscha. Genetics 7665.

    Google Scholar 

  • Atkinson, D. E. (1969). Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell. In Horecker, B. L., and Statdman, E. R. (eds.), Current Topics in Cellular Regulation, Academic Press, New York, pp. 29–43.

    Google Scholar 

  • Bailey, G. S., Wilson, A. C., Halver, J. E., and Johnson, C. L. (1970). Multiple forms of supernatant malate dehydrogenase in salmonid fishes. J. Biol. Chem. 245(225927.

    Google Scholar 

  • Baldwin, J., and Hochachka, P. W. (1970). Functional significance of isozymes in thermal acclimation: Acetylcholinesterase from trout brain. Biochem. J. 116883.

    Google Scholar 

  • Banaszak, L. T., and Bradshaw, R. A. (1975). Malate dehydrogenases. In Boyer, P. D. (ed.), The Enzymes, Vol. XI, Academic Press, New York, pp. 369–396.

    Google Scholar 

  • Clayton, J. W., Tretiak, D. N., Billeck, B. N., and Ihssen, P. (1975). Genetics of multiple supernatant and mitochondrial malate dehydrogenase isozymes in rainbow trout (Salmo gairdneri). In Markert, C. L. (ed.), Isozymes, Vol. IV, Academic Press, New York, pp. 433–448.

    Google Scholar 

  • Everse, J., and Kaplan, N. O. (1975). Mechanisms of action and biological functions of various dehydrogenase isozymes. In Markert, C. L. (ed.), Isozymes, Vol. II, Academic Press, New York, pp. 29–43.

    Google Scholar 

  • Ferris, S. D., and Whitt, G. S. (1977). Loss of duplicate gene expression after polyploidisation. Nature 265258.

    Google Scholar 

  • Hochachka, P. W., and Somero, G. N. (1973). Strategies of Biochemical Adaptation, Saunders, Philadelphia, pp. 228–253.

    Google Scholar 

  • Hoskins, M. A. H., and Aleksiuk, M. (1973). Effects of temperature on the kinetics of malate dehydrogenase from a cold climate reptile, Thamnophis sirtalis parietalis. Comp. Biochem. Physiol. 45B343.

    Google Scholar 

  • Howell, B. J., Baumgardner, F. W., Bondi, K., and Rahn, H. (1970). Acid-base balance in coldblooded vertebrates as a function of body temperature. Am. J. Physiol. 218600.

    Google Scholar 

  • Koehn, R. K. (1969). Esterase heterogeneity: Dynamics of a polymorphism. Science 180943.

    Google Scholar 

  • Koehn, R. K. (1978). Biochemical aspects of genetic variation at the Lap locus in Mytilus edulis. In Battaglis, B., and Beardmore, J. (eds.), Marine Organisms, Plenum, New York, pp. 211–227.

    Google Scholar 

  • Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Markert, C. L. (1968). The molecular basis for isozymes. Ann N.Y. Acad. Sci. 151(114.

    Google Scholar 

  • Markert, C. L. (1975). Biology of isozymes. In Markert, C. L. (ed.), Isozymes, Vol. I., Academic Press, New York, pp. 1–9.

    Google Scholar 

  • Markert, C. L., Shaklee, J. B., and Whitt, G. S. (1975). Evolution of a gene. Science 189102.

    Google Scholar 

  • Merritt, R. B. (1972). Geographic distribution and enzymatic properties of lactate allozymes in the fathead minnow, Pimephales promelas. Am. Nat. 106173.

    Google Scholar 

  • Merritt, R. B., Rogers, J. F., and Kurz, B. J. (1978). Genic variability in the longnose dace, Rhinichthys cataractae. Evolution 32(1116.

    Google Scholar 

  • Place, A. R., and Powers, D. A. (1978). Genetic bases for protein polymorphism in Fundulus heteroclitus (L.). I. Lactate dehydrogenase (Ldh-B), malate dehydrogenase (Mdh-A), Glucosephosphate isomerase (Gpi-B) and phosphoglucomutase (Pgm-A). Biochem. Genet. 16577.

    Google Scholar 

  • Reeves, R. B. (1969). Role of body temperature in determining the acid-base state in vertebrates. Fed. Proc. 28(31204.

    Google Scholar 

  • Richmond, M. C., and Zimmerman, E. G. (1978). Effect of temperature on activity of allozymic forms of supernatant malate dehydrogenase in the red shiner, Notropis lutrensis. Comp. Biochem. Physiol. 61B415.

    Google Scholar 

  • Rolleston, F. S. (1972). A theoretical background to the use of measured concentrations of intermediates in study of the control of intermediary metabolism. In Horecker, B. L., and Stadtman, E. R. (eds.), Current Topics in Cellular Regulation, Academic Press, New York, pp. 47–75.

    Google Scholar 

  • Shaklee, J. B., Christiansen, J. A., Sidell, B. D., Prosser, C. L., and Whitt, G. S. (1977). Molecular aspects of temperature acclimation in fish: Contribution of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J. Exp. Zool. 2011.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1969). Biometry, Freeman, San Francisco, pp. 398–399.

    Google Scholar 

  • Somero, G. N. (1975). The roles of isozymes in adaptation to varying temperatures. In Markert, C. L. (ed.), Isozymes, Vol. II, Academic Press, New York, pp. 221–234.

    Google Scholar 

  • Vessel, E. S. (1975). Medical uses of isozymes. In Markert, C. L. (ed.), Isozymes, Vol. II, Academic Press, New York, pp. 1–28.

    Google Scholar 

  • Wheat, T. E., Childers, W. F., Miller, E. T., and Whitt, G. S. (1971). Genetic and in vitro molecular hybridization of malate dehydrogenase isozymes in interspecific bass (Micropterus) hybrids. Anim. Blood Grps. Biochem. Genet. 23.

    Google Scholar 

  • Whitt, G. S. (1970). Genetic variation of supernatant and mitochondrial malate dehydrogenase isozymes in the teleost Fundulus heteroclitus. Experientia 26734.

    Google Scholar 

  • Wilson, F. R., Whitt, G. S., and Prosser, C. L. (1973). Lactate dehydrogenase and malate dehydrogenase isozyme patterns in tissues of temperature-acclimated goldfish. Carassius auratus L. Comp. Biochem. Physiol. 46B105.

    Google Scholar 

  • Wilson, T. L. (1977). Theoretical analysis of the effects of two pH regulations patterns on the temperature sensitivities of biological systems of nonhomeothermic animals. Arch. Biochem. Biophys. 192409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by NSF Grant SM176-83974 and a grant from the Blakeslee Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starzyk, R.M., Merritt, R.B. Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae . Biochem Genet 18, 755–764 (1980). https://doi.org/10.1007/BF00484591

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484591

Key words

Navigation