Advertisement

Biochemical Genetics

, Volume 15, Issue 1–2, pp 173–193 | Cite as

Pyrimidine biosynthesis in Serratia marcescens: Polypeptide interactions of three nonsequential enzymes

  • James R. Wild
  • William L. Belser
Article

Abstract

Orotidine-5′-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the Kms for PRPP and orotate were stoichiometric: 2.3×10−6m and 2.6×10−6m, respectively. Following separation, the Kms were significantly different: 1.3 × 10−6m for PRPP and 4.1×10−6m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.

Key words

Serratia marcescens pyrimidine biosynthesis enzyme aggregation regulation bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, D. M., Lue, P. F., and Kaplan, J. G. (1975). Kinetics and reaction mechanism of the carbamylphosphate synthetase of a multienzyme aggregate from yeast. Can. J. Biochem. 53721.Google Scholar
  2. Appel, S. H. (1968). Purification and kinetic properties of brain orotidine 5′-phosphate decarboxylase. J. Biol. Chem. 2433924.Google Scholar
  3. Beckwith, J. R., Pardee, A. B., Austrian, R., and Jacob, F. (1962). Coordination of the synthesis of the enzymes in the pyrimidine pathway. J. Mol. Biol. 5618.Google Scholar
  4. Brown, G. K., Fox, R. M., and O'Sullivan, W. J. (1975). Interconversion of different molecular weight forms of human erythrocyte orotidylate decarboxylase. J. Biol. Chem. 2507352.Google Scholar
  5. Calvo, J. M., and Fink, G. R. (1971). Regulation of biosynthetic pathways in bacteria and fungi. Ann. Rev. Biochem. 40943.Google Scholar
  6. Caroline, D. F. (1969). Pyrimidine synthesis in Neurospora crassa: Gene-enzyme relationships. J. Bacteriol. 1001371.Google Scholar
  7. Eakin, R. T., and Mitchell, H. K. (1969). A mitochondrial oxidase system in Neurospora crassa. Arch. Biochem. Biophys. 134160.Google Scholar
  8. Fausto, N. (1969). The control of RNA synthesis during liver regeneration: OMP pyrophosphorylase and decarboxylase activities in normal and regenerating liver. Biochim. Biophys. Acta 18266.Google Scholar
  9. Fox, I. H., and Kelley, W. N. (1971). Human phosphoribosyl-pyrophosphate synthetase. J. Biol. Chem. 2465739.Google Scholar
  10. Freiden, C. (1971). Protein-protein interaction and enzymatic activity. Ann. Rev. Biochem. 40653.Google Scholar
  11. Gerhart, J. C., and Pardee, A. B. (1962). The enzymology of control by feedback inhibition. J. Biol. Chem. 237891.Google Scholar
  12. Ginsburg, A., and Stadtman, E. R. (1970). Multienzyme systems. Ann. Rev. Biochem. 39429.Google Scholar
  13. Grobner, W., and Kelley, W. N. (1975). Effect of allopurinol and its metabolic derivatives on the configuration of human orotate phosphoriboxyltransferase and orotidine 5′-phosphate decarboxylase. Biochem. Pharmacol. 24379.Google Scholar
  14. Hutson, J. Y., and Downing, M. (1968). Pyrimidine biosynthesis in Lactobacillus leichmannii. J. Bacteriol. 961249.Google Scholar
  15. Isaac, J. H., and Holloway, B. W. (1968). Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 961732.Google Scholar
  16. Jones, M. E. (1971). Regulation of pyrimidine and arginine biosynthesis in mammals. Adv. Enzyme Regul. 919.Google Scholar
  17. Jones, M. E. (1972). Regulation of uridylic acid biosynthesis in eukaryotic cells. Cur. Top. Cell. Regul. 6227.Google Scholar
  18. Karibian, D., and Couchoud, P. (1974). Dihydro-orotate oxidase of Escherichia coli K12: Purification, properties, and relation to the cytoplasmic membrane. Biochim. Biophys. Acta 364218.Google Scholar
  19. Kasbekar, E. G., Nagabhushanam, A., and Greenberg, D. M. (1964). Purification and properties of orotic acid-decarboxylating enzymes from calf thymus. J. Biol. Chem. 2394245.Google Scholar
  20. Labrum, E. L., and Bunting, M. I. (1953). Spontaneous and induced color variation of the HY strain of Serratia marcescens. J. Bacteriol. 65394.Google Scholar
  21. LaCroute, F. (1968). Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 95825.Google Scholar
  22. Lieberman, I., Kornberg, A., and Simms, E. S. (1954). Enzymatic synthesis of pyrimidine and purine nucleotides. II. Orotidine-5′-phosphate pyrophosphorylase and decarboxylase. J. Amer. Chem. 762844.Google Scholar
  23. Lieberman, I., Kornberg, A., and Simms, E. S. (1955). Enzymatic synthesis of pyrimidine nucleotides orotidine-5′-phosphate and uridine-5′-phosphate. J. Biol. Chem. 215403.Google Scholar
  24. Long, C. W., Levitzki, A., and Koshland, D. E., Jr. (1970). The subunit interactions of cytidine triphosphate synthetase. J. Biol. Chem. 24580.Google Scholar
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  26. Matsuura, T., and Jones, M. E. (1974). Subcellular localization in the Ehrlich ascites cell of the enzyme which oxidizes dehydroorotate to orotate. In Richter, D. (ed.), The Lipmann Symposium: Energy, Regulation and Biosynthesis in Molecular Biology, Walter de Gruyter, Berlin, pp. 422–434.Google Scholar
  27. Miller, R. W. (1975). A high molecular weight dihydroorotate dehydrogenase of Neurospora crassa. Purification and properties of this enzyme. Can. J. Biochem. 531288.Google Scholar
  28. Miller, R. W., and Curry, J. R. (1969). Mammalian dihydroorotate-ubiquinone reductase complex. II. Correlation with cytochrome oxidase, mode of linkage with the cytochrome chain, and general properties. Can. J. Biochem. 47725.Google Scholar
  29. Mori, M., and Tatibana, M. (1973). Dissociation by elastase digestion of enzyme complex catalyzing the initial steps of pyrimidine biosynthesis in rat liver. Biochem. Biophys. Res. Commun. 541525.Google Scholar
  30. Mori, M., Ishida, H., and Tatibana, M. (1975). Aggregation states and catalytic properties of the multienzyme complex catalyzing the initial steps of pyrimidine biosynthesis in rat liver. Biochemistry 142622.Google Scholar
  31. Nagano, Y., Samjima, H., and Kinoshita, S. (1966). Conversion of orotic acid to uridine-5′-monophosphate by enzymes of Micrococcus glutamicus. Agr. Biol. Chem. 3083.Google Scholar
  32. O'Donovan, G. A., and Neuhard, J. (1970). Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34278.Google Scholar
  33. Ornstein, L. (1961). Disc Electrophoresis, Canal Industrial Corp. Bethesda, Md.Google Scholar
  34. Potvin, B. W., Kelleher, R. J., Jr., and Gooder, H. (1975). Pyrimidine biosynthetic pathway of Bacillus subtilis. J. Bacteriol. 123604.Google Scholar
  35. Pynadath, T. L., and Fink, R. M. (1967). Studies of orotidine-5′-phosphate decarboxylase in Neurospora crassa. Arch. Biochem. Biophys. 118185.Google Scholar
  36. Reichard, P. (1959). The enzymic synthesis of pyrimidines. Adv. Enzymol. 21263.Google Scholar
  37. Shoaf, W. T., and Jones, M. E. (1973). Uridylic acid synthesis in Ehrlich ascites carcinoma: Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes. Biochemistry 124039.Google Scholar
  38. Umezu, K., Amaya, T., Yoshimoto, A., and Tomita, K. (1971). Purification and properties of orotidine-5′-phosphate pyrophosphorylase and orotidine-5′-phosphate decarboxylase from baker's yeast. J. Biochem. 70249.Google Scholar
  39. Warburg, O., and Christian, W. (1942). Distributed by Calbiochem. Biochem. Z. 310384.Google Scholar
  40. Wild, J. R., and Belser, W. L. (1977). Pyrimidine biosynthesis in Serratia marcescens: A possible role for nonsequential enzyme interactions in mimicking coordinate gene expression. Biochem. Genet. 15157.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • James R. Wild
    • 1
  • William L. Belser
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaRiverside

Personalised recommendations