Advertisement

Biochemical Genetics

, Volume 16, Issue 11–12, pp 1187–1202 | Cite as

Molecular and tissue-specific heterogeneity in HPRT deficiency

  • M. P. Uitendaal
  • C. H. M. M. de Bruyn
  • T. L. Oei
  • P. Hösli
Article

Abstract

In several patients with different degrees of HPRT deficiencies, residual activities have been determined in both lysed and intact erythrocytes. No close correlation could be found between the degree of HPRT deficiency and the severity of the clinical expression. Unless HPRT activity in both intact and lysed erythrocytes was below detection level, the residual activity in intact red blood cells was higher than in lysates. Tissue-specific heterogeneity was illustrated with a patient suffering from X-linked gout. Lysates from erythrocytes, leukocytes, and cultured fibroblasts showed 1%, 8%, and 100% of normal HPRT activity, respectively. Characterization of the erythrocyte and fibroblast HPRT from this patient showed no kinetic abnormalities. However, there was a decreased heat stability. It is concluded that for a better understanding of the pathophysiology in HPRT deficiency studies on nucleated cells from the different tissues are needed.

Key words

HPRT deficiency molecular heterogeneity tissue-specific heterogeneity cultured fibroblasts ultramicrochemical enzyme characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, W. J., Meade, J. C., and Kelley, W. N. (1972). Hypoxanthine-guanine phosphoribosyl transferase: Characteristics of the mutant enzyme in erythrocytes from patients with the Lesch-Nyhan syndrome. J. Clin. Invest. 511805.Google Scholar
  2. Bakay, B., and Nyhan, W. L. (1972). Electrophoretic properties of hypoxanthine-guanine phosphoribosyl transferase in erythrocytes of subjects with Lesch-Nyhan syndrome. Biochem. Genet. 6139.Google Scholar
  3. Becker, M. A., and Sweetman, L. (1975). Gout with mild hypoxanthine-guanine phosphoribosyl transferase deficiency due to diminished affinity for purine substrate (abst.). Clin. Res. 23:26A.Google Scholar
  4. Benke, P. J., and Herrick, N. (1972). Azaguanine resistance as a manifestation of a new form of metabolic overproduction of uric acid. Am. J. Med. 52547.Google Scholar
  5. Chow, D. C., Kawahara, F. S., Saunders, T., and Sorensen, L. B. (1970). A new assay method for hypoxanthine-guanine phosphoribosyl transferase. J. Lab. Clin. Med. 76733.Google Scholar
  6. Dancis, J., Yip, L. C., Cox, R. P., Piomelli, S., and Balis, M. E. (1973). Disparate enzyme activity in erythrocytes and leucocytes: A variant of hypoxanthine phosphoribosyl transferase deficiency with an unstable enzyme. J. Clin. Invest. 522068.Google Scholar
  7. de Bruyn, C. H. M. M. (1976). Hypoxanthine-guanine phosphoribosyl transferase deficiency. Hum. Genet. 31127.Google Scholar
  8. de Bruyn, C. H. M. M., and Oei, T. L. (1977). Incorporation of purine bases by intact red blood cells. Adv. Exp. Med. Biol. 76B139.Google Scholar
  9. de Bruyn, C. H. M. M., Oei, T. L., Geerdink, R. A., and Lommen, E. J. P. (1973). An atypical case of hypoxanthine-guanine phosphoribosyl transferase deficiency (Lesch-Nyhan syndrome). II. Genetic studies. Clin. Genet. 4353.Google Scholar
  10. de Bruyn, C. H. M. M., Oei, T. L., and Hösli, P. (1976). Quantitative radiochemical enzyme assays in single cells: Purine phosphoribosyl transferase activities in cultured fibroblasts. Biochem. Biophys. Res. Commun. 68483.Google Scholar
  11. Dwosh, I. L., Moore, M., and Fox, I. H. (1974). Hypoxanthine-guanine phosphoribosyl transferase deficiency: Phenotypic and genotypic heterogeneity. J. Rheumatol. 1441.Google Scholar
  12. Fox, I. H., and Marchant, P. (1977). Human 5′-nucleotidase: Multiple molecular forms and regulation. Adv. Exp. Med. Biol. 76A249.Google Scholar
  13. Fujimoto, W. Y., and Seegmiller, J. E. (1970). Hypoxanthine-guanine phosphoribosyl transferase deficiency: Activity in normal, mutant and heterozygote cultured human skin fibroblasts. Proc. Natl. Acad. Sci. 65577.Google Scholar
  14. Geerdink, R. A., de Vries, W. H. M., Willemse, J., Oei, T. L., and de Bruyn, C. H. M. M. (1973). An atypical case of hypoxanthine-guanine phosphoribosyl transferase deficiency (Lesch-Nyhan syndrome). I. Clinical studies. Clin. Genet. 4348.Google Scholar
  15. Harris, H., and Cook, P. R. (1969). Synthesis of an enzyme by an erythrocyte nucleus in a hybrid cell. J. Cell Sci. 5121.Google Scholar
  16. Hatanaka, M., DelGuidice, R., and Long, C. (1975). Adenine formation from adenosine by mycoplasmas: Adenosine phosphorylase activity. Proc. Natl. Acad. Sci. 721401.Google Scholar
  17. Henderson, J. F., Brox, L. W., Kelley, W. N., Rosenbloom, F. M., and Seegmiller, J. E. (1968). Kinetic studies of hypoxanthine-guanine phosphoribosyl transferase. J. Biol. Chem. 2432514.Google Scholar
  18. Holland, M. J. C., Dilorenzo, A. M., Dancis, J., Balis, M. E., Yü, T. F., and Cox, R. P. (1976). Hypoxanthine phosphoribosyltransferase activity in intact fibroblasts from patients with X-linked hyperuricemia. J. Clin. Invest. 571600.Google Scholar
  19. Hösli, P. (1972). Tissue cultivation on plastic films. Tecnomara A. G., Rieterstrasse 59, Postfach CH 8059, Zürich, Switzerland.Google Scholar
  20. Hösli, P. (1974). Microtechniques for rapid prenatal diagnosis in early pregnancy. In Motulski, A. G., and Lentz, W. (eds.), Birth Defects Excerpta Medica, Amsterdam, pp. 226–233.Google Scholar
  21. Hösli, P. (1977). Quantitative assays of enzyme activity in single cells: Early prenatal diagnosis of genetic disorders. Clin. Chem. 231476.Google Scholar
  22. Hösli, P., and de Bruyn, C. H. M. M. (1977). Ultramicrochemistry: A contribution to the analysis of purine metabolism in man. Adv. Exp. Med. Biol. 76A591.Google Scholar
  23. Kelley, W. N., and Meade, J. C. (1971). Studies on hypoxanthine-guanine phosphoribosyl transferase in fibroblasts from patients with the Lesch-Nyhan syndrome: Evidence for genetic heterogeneity. J. Biol. Chem. 2462553.Google Scholar
  24. Kelley, W. N., Rosenbloom, F. M., Henderson, J. F., and Seegmiller, J. E. (1967). A specific enzyme defect in gout associated with overproduction of uric acid. Proc. Natl. Acad. Sci. 571735.Google Scholar
  25. Lesch, M., and Nyhan, W. L. (1964). A familial disorder of uric acid metabolism and central nervous system function. Am. J. Med. 36561.Google Scholar
  26. Lommen, E. J. P. (1973). Hypoxanthine-guanine phosphoribosyl transferase deficiency. Thesis, Centrale Drukkerijen, Nijmegen.Google Scholar
  27. McDonald, J. A., and Kelley, W. N. (1971). Lesch-Nyhan syndrome: Altered kinetic properties of mutant enzyme. Science 171689.Google Scholar
  28. Murray, A. W., and Friedrichs, B. (1969). Inhibition of 5′-nucleotidase from Ehrlich ascites tumor cells by nucleoside triphosphates. Biochem. J. 11183.Google Scholar
  29. Seegmiller, J. E. (1976). Inherited deficiency of hypoxanthine-guanine phosphoribosyl transferase in X-linked uric aciduria. Adv. Hum. Genet. 675.Google Scholar
  30. Seegmiller, J. E., Rosenbloom, F. M., and Kelley, W. N. (1967). Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 1551682.Google Scholar
  31. Sperling, O., Boer, P., Eilam, G., and de Vries, A. (1972). Evidence for molecular alteration of erythrocyte hypoxanthine-guanine phosphoribosyl transferase in a gouty family with partial deficiency of the enzyme. Eur. J. Clin, Biol. Res. 1772.Google Scholar
  32. Uitendaal. M. P., Oei, T. L., de Bruyn, C. H. M. M., and Hösli, P. (1976). Metabolic cooperation studied by a quantitative enzyme assay of single cells. Biochem. Biophys. Res. Commun. 71574.Google Scholar
  33. Uitendaal, M. P., de Bruyn, C. H. M. M., Oei, T. L., and Hösli, P. (1978). Characterisation of purine nucleoside phosphorylase from fibroblasts using ultramicrochemical methods. Hum. Hered. 28151.Google Scholar
  34. van der Zee, S. P. M. (1972). Het Lesch-Nyhan syndroom. Thesis, Schippers, Nijmegen.Google Scholar
  35. van Herwaarden, C. L. A., van der Korst, J. K., Boerbooms, A. M. P., de Bruyn, C. H. M. M., and Oei, T. L. (1976). Partial hypoxanthine-guanine phosphoribosyl transferase deficiency in a “Celebesian” family. Neth. J. Med. 19272.Google Scholar
  36. Yü, T. F., Balis, M. E., Krenitsky, T. A., Dancis, J., Silvers, D. N., Elion, G. B. and Gutman, A. B. (1972). Rarity of X-linked partial hypoxanthine-guanine phosphoribosyl transferase deficiency in a large gouty population. Ann. Intern. Med. 76255.Google Scholar
  37. Zoref, E., Sperling, O., and de Vries, A. (1974). Stabilization by PRPP of cellular purine phosphoribosyl transferases against inactivation by freezing and thawing: Study of normal and hypoxanthine-guanine phosphoribosyl transferase deficient human fibroblasts. Adv. Exp. Med. Biol. 41A15.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • M. P. Uitendaal
    • 1
  • C. H. M. M. de Bruyn
    • 1
  • T. L. Oei
    • 1
  • P. Hösli
    • 2
  1. 1.Department of Human Genetics, Faculty of MedicineUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Department of Molecular BiologyInstitut PasteurParis, 15France

Personalised recommendations