Biochemical Genetics

, Volume 16, Issue 11–12, pp 1059–1071 | Cite as

Identification, properties, and genetic control of UDP-glucose: Cyanidin-3-rhamnosyl-(1→6)-glucoside-5-O-glucosyltransferase isolated from petals of the red campion (Silene dioica)

  • John Kamsteeg
  • Jan van Brederode
  • Gerrit van Nigtevecht


An enzyme catalyzing the transfer of the glucosyl moiety of UDP-glucose to the 5-hydroxyl group of cyanidin-3-rhamnosyl-(1→6)-glucoside has been demonstrated in petal extracts of Silene dioica plants. This glucosyltransferase activity was not detectable in green parts of these plants. The enzyme activity is controlled by a single dominant gene M; no glucosyltransferase activity could be demonstrated in petals of m/m plants. The enzyme was purified eightyfold by PVP and Sephadex G50 chromatography. The glucosyltransferase had a pH optimum of 7.4, had a molecular weight of about 55,000, was stimulated by divalent metal ions, and had a “true Km” value of 0.5×10−3m for UDP-glucose and 3.6×10−3m for cyanidin-3-rhamnosylglucoside. Pelargonidin-3-rhamnosylglucoside also could serve as acceptor. The enzyme did not catalyze the glucosylation of the 5-hydroxyl group of cyanidin-3-glucoside, although in petals of M/- n/n mutants cyanidin-3,5-diglucoside is present. ADP-glucose could not serve as a glucosyl donor.

Key words

Silene dioica Caryophyllaceae Red Campion anthocyanin biosynthesis glycosylation 5-O-glucosyltransferase genetic control cyanidin and pelargonidin glycosides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P. (1965). Biochem. J. 96595.Google Scholar
  2. Barber, G. A. (1962). Biochem. Biophys. Res. Commun. 8203.Google Scholar
  3. Barber, G. A. (1963). Arch. Biochem. Biophys. 103276.Google Scholar
  4. Barber, G. A. (1966). Meth. Enzymol. 8307.Google Scholar
  5. ChandraRajan, J., and Klein, J. (1975). Anal. Chem. 69632.Google Scholar
  6. Florini, J. R., and Vestling, C. S. (1957). Biochim. Biophys. Acta 25575.Google Scholar
  7. Hassid, W. R. (1967). Ann. Rev. Physiol. 18253.Google Scholar
  8. Jorgensen, E. C., and Geissman, T. A. (1955). Arch. Biochem. Biophys. 55389.Google Scholar
  9. Kamsteeg, J., van Brederode, J., and van Nigtevecht, G. (1976). Phytochemistry 151917.Google Scholar
  10. Kamsteeg, J., van Brederode, J., and van Nigtevecht, G. (1978). Biochem. Genet. 161045.Google Scholar
  11. Krishnamurty, H. G., Krishnamoorthy, V., and Seshadri, T. R. (1963). Phytochemistry 247.Google Scholar
  12. Lineweaver, H., and Burk, D. (1934). J. Am. Chem. Soc. 56658.Google Scholar
  13. Lowry, O. H., Rosebrough, H. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193265.Google Scholar
  14. Lynn, D. Y. C., and Luh, B. S. (1964). J. Food Sci. 29735.Google Scholar
  15. Van Brederode, J., van Nigtevecht, G., and Kamsteeg, J. (1975). Heredity 35429.Google Scholar
  16. Van Nigtevecht, G. (1966). Genetica 37281.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • John Kamsteeg
    • 1
  • Jan van Brederode
    • 1
  • Gerrit van Nigtevecht
    • 1
  1. 1.Department of Population and Evolutionary BiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations