Biochemical Genetics

, Volume 13, Issue 11–12, pp 813–831 | Cite as

Gene topography and function. I. Gene expression in germinating conidia of Neurospora crassa

  • Andrés J. Jobbágy
  • Néstor O. Aversa
  • Claudio D. Denoya


In an attempt to find clues for the significance of the gene ordering along the eukaryotic chromosome, a system consisting of germinating conidia of Neurospora crassa was studied. Thirteen enzyme activities corresponding to genes widely distributed on five chromosomes were determined in dormant and in germinating conidia. Ten of these enzymes showed lower activities in the resting state, and the time patterns of their increase were determined during germination. The results obtained do not support a scheme of sequential expression of genes during the emergence from dormancy as a counterpart of the sequence of the corresponding genes along the chromosome. Two of the loci studied were analyzed both in the normal (wild-type) ordering and in a translocated position in which the two genes are located in an inverted order respective to the centromere and farther apart from it. The altered order of the genes did not influence significantly the time and pattern of increase in the activities of the corresponding enzymes.

Key words

Neurospora enzyme activities in conidia gene order enzyme activity during germination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmiller, D. H., and Wagner, R. P. (1970). Purification and properties of dihydroxyacid dehydratase from soluble and mitochondrial fractions of Neurospora crassa. Arch. Biochem. Biophys. 138160.Google Scholar
  2. Ames, B. N., and Horecker, B. L. (1956). The biosynthesis of histidine: Imidazoleacetol phosphate transaminase. J. Biol. Chem. 220113.Google Scholar
  3. Brewbaker, J. L. (1964), Agricultural Genetics, Prentice-Hall, Englewood Cliffs, N.J., Chap. 3, p. 46.Google Scholar
  4. Caroline, D. F. (1969). Pyrimidine synthesis in Neurospora crassa: Gene-enzyme relationships. J. Bacteriol. 1001371.Google Scholar
  5. Davidson, E. H., Hough, B. R., Amenson, C. S., and Britten, R. J. (1971). General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. Mol. Biol. 771.Google Scholar
  6. Davis, R. H. (1965). Carbamyl phosphate synthesis in Neurospora crassa. I. Genetics, metabolic position, and regulation of arginine-specific carbamyl phosphokinase. Biochim. Biophys. Acta 10754.Google Scholar
  7. Elston, R. C., and Glassman, E. (1967). An approach to the problem of whether clustering of functionally related genes occurs in higher organisms. Genet. Res. 9141.Google Scholar
  8. Glatzer, L., Eakin, E., and Wagner, R. P. (1972). Acetohydroxy acid synthetase with a pH optimum of 7.5 from Neurospora crassa mitochondria: Characterization and partial purification. J. Bacteriol. 112453.Google Scholar
  9. Halvorson, H. O., Carter, B. L. A., and Tauro, P. (1971a). Use of synchronous cultures of yeast to study gene position. In Grossman, L., and Moldave, K. (eds.), Methods in Enzymology, Vol. XXI, Academic Press, New York, pp. 462–470.Google Scholar
  10. Halvorson, H. O., Carter, B. L. A., and Tauro, P. (1971b). Synthesis of enzymes during the cell cycle. Advan. Microb. Physiol. 647.Google Scholar
  11. Harding, R. W., Caroline, D. F., and Wagner, R. P. (1970). The pyruvate dehydrogenase complex from the mitochondrial fraction of Neurospora crassa. Arch. Biochem. Biophys. 138653.Google Scholar
  12. Henney, H. R., Jr., and Storck, R. (1964). Polyribosomes and morphology in Neurospora crassa. Proc. Natl. Acad. Sci. 511050.Google Scholar
  13. Huberman, J. A., and Riggs, A. D. (1968). On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32327.Google Scholar
  14. Jobbágy, A. J. (1967). Altered aspartate transcarbamylase of Neurospora crassa responsible for a suppressor effect. Arch. Biochem. Biophys. 122421.Google Scholar
  15. Jobbágy, A. J., and Wagner, R. P. (1973). Changes in enzyme activity of germinating conidia of Neurospora crassa. Develop. Biol. 31264.Google Scholar
  16. Kennett, R. H., and Sueoka, N. (1971) Gene expression during outgrowth of Bacillus subtilis spores. J. Mol. Biol. 6931.Google Scholar
  17. Lowry, O. H., Rosebrough, J. H., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  18. Mirkes, P. E. (1974). Polysomes, ribonucleic acid, and protein synthesis during germination of Neurospora crassa conidia. J. Bacteriol. 117196.Google Scholar
  19. Perkins, D. D. (1972). An insertional translocation in Neurospora that generates duplications heterozygous for mating type. Genetics 7125.Google Scholar
  20. Pontecorvo, G. (1958). Trends in Genetic Analysis, Columbia University Press, New York, Chap. 3, pp. 54–71.Google Scholar
  21. Radford, A. (1972). Revised linkage maps of Neurospora crassa. Neurospora Newsletter 1925.Google Scholar
  22. Roberts, D. B., and Pateman, J. A. (1964). Immunological studies of amination deficient strains of Neurospora crassa. J. Gen. Microbiol. 34295.Google Scholar
  23. Sanderson, K. E. (1967). Revised linkage map of Salmonella typhimurium. Bacteriol. Rev. 31354.Google Scholar
  24. Sober, H. A. (ed.) (1968). Handbook of Biochemistry, Chemical Rubber Co., Cleveland, pp. 149–154, 159–163.Google Scholar
  25. Strickberger, M. W. (1968). Genetics, Macmillan, New York, Chap. 22, pp. 479–514.Google Scholar
  26. Swanson, C. P., Merz, T., and Young, W. J. (1967). Cytogenetics, Prentice-Hall, Englewood Cliffs, N.J., Chap. 4, pp. 93–124.Google Scholar
  27. Tauro, P., Schweizer, E., Epstein, R., and Halvorson, H. O. (1969). Synthesis of macromolecules during the cell cycle in yeast. In Padilla, G. M., Whitson, G. L., and Cameron, I. L. (eds.), The Cell Cycle: Gene Enzyme Interactions, Academic Press, New York, pp. 101–118.Google Scholar
  28. Taylor, A. L., and Trotter, C. D. (1967). Revised linkage map of Escherichia coli. Bacteriol, Rev. 31332.Google Scholar
  29. Vogel, H. J. (1956). A convenient growth medium for Neurospora (medium N). Microb. Genet. Bull. 1342.Google Scholar
  30. Vogel, H. J., and Jones, E. E. (1970). Acetylornithine Δ-aminotransferase (Escherichia coli). In Tabor, H., and Tabor, C. W. (eds.), Methods in Enzymology, Vol. XVIIA, Academic Press, New York, pp. 260–264.Google Scholar
  31. Wampler, D. C., and Fairley, J. L. (1967). Argininosuccinate of Neurospora crassa. Arch. Biochem. Biophys. 121580.Google Scholar
  32. Watson, J. D. (1970). Molecular Biology of the Gene, W. A. Benjamin, New York, 2nd ed., Chap. 15, pp. 482–483.Google Scholar
  33. Wilson, D. A., and Thomas, C. A., Jr. (1974). Palindromes in chromosomes. J. Mol. Biol. 84115.Google Scholar
  34. Yanofsky, C. (1955). Tryptophan synthetase from Neurospora. In Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Vol. II, Academic Press, New York, pp. 233–238.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Andrés J. Jobbágy
    • 1
  • Néstor O. Aversa
    • 1
  • Claudio D. Denoya
    • 1
  1. 1.Departamento de Ciencias Biológicas, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations