Biochemical Genetics

, Volume 20, Issue 9–10, pp 891–905 | Cite as

Description and genetics of glucose phosphate isomerase (GPI) and phosphoglucomutase (PGM) polymorphisms in Asellus aquaticus (L.)

  • Eric Verspoor
Article

Abstract

Analysis of Western European populations of Asellus aquaticus uncovered 10 electrophoretic phenotypes of glucose phosphate isomerase (GPI) and 7 of phosphoglucomutase (PGM). Breeding studies indicate that the variation is controlled by codominant alleles at two autosomal loci. Genotype frequencies in the two sexes do not differ significantly, mating between genotypes is random, and no structural linkage is detectable between the two loci. PGM shows nongenetic, “secondary” banding, particularly in animals stored at −20°C prior to electrophoresis. This secondary banding confounds the identification of the genetic variation but can be controlled by the reducing agent 2-mercaptoethanol.

Key words

Asellus aquaticus polymorphism allozymes genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birstein, S., Throckmorton, L. H., and Hubby, J. L. (1973). Still more genetic variability in natural populations. Proc. Natl. Acad. Sci. USA 703928.Google Scholar
  2. Christiansen, F. B., Frydenberg, O., and Simonsen, V. (1973). Genetics of Zoarces populations. IV. Selection component analysis of an esterase polymorphism including mother-offspring combinations. Hereditas 87(2): 293.Google Scholar
  3. Christiansen, B., Lomholt, B., and Jelnes, J. E. (1974). Selection and mechanical mixing operating on a 2-allele amylase system in Asellus aquaticus (Isopoda, Crustacea). Hereditas 77255.Google Scholar
  4. Corbin, K. (1977). Phosphoglucose isomerase polymorphism and natural selection in the sand crab Emerita talpoida. Evolution 31(2):331.Google Scholar
  5. Dawson, D. M., and Greene, J. M. (1975). Phosphoglucomutase isozymes caused by sulfhydryl oxidation. In Markert, C. L. (ed.), Isozymes I—Molecular Structure Academic Press, New York.Google Scholar
  6. Dawson, D. M., and Jaeger, S. (1970). Heterogeneity of phosphoglucomutase. Biochem. Genet. 41.Google Scholar
  7. Eanes, W. F., Gaffney, P. M., Koehn, R. K., and Simon, C. M. (1977). A study of sexual selection in natural populations of the milkweed beetle Tetraopes tetraophthalmus. In Christiansen, F. B., and Fenchel, T. M. (eds.), Measuring Selection in Natural Populations, Lecture Notes in Biomathematics Springer-Verlag, New York.Google Scholar
  8. Fisher, R. A. (1958). Statistical Methods for Research Workers, 13th ed., Hafner, New York.Google Scholar
  9. Fisher, R. A., and Harris H. (1972). “Secondary” isozymes derived from the three PGM loci. Ann. Hum. Genet. Lond. 3669.Google Scholar
  10. Gosling, E. (1979). Hidden genetic variability in two populations of a marine mussel. Nature 279713.Google Scholar
  11. Gracy, R. W. (1975). Nature of the multiple forms of glucosephosphate and triosephosphate isomerases. In Markert, C. L. (ed.), Isozymes I—Molecular Structure Academic Press, New York.Google Scholar
  12. Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.Google Scholar
  13. Hjorth, J. P. (1970). A phosphoglucomutase locus in Drosophila melanogaster. Hereditas 64146.Google Scholar
  14. Hopkinson, D. A. (1970). The investigation of reactive sulphhydryls in enzymes and their variants by starch gel electrophoresis: Studies on the human phosphohexose isomerase variant PHI 5-1. Ann. Hum. Genet. Lond. 3479.Google Scholar
  15. Johnson, G. B. (1977). Assessing electrophoretic similarity: The problem of hidden heterogeneity. Annu. Rev. Ecol Syst. 8309.Google Scholar
  16. Kuhnl, P., and Spielmann, W. (1978). Investigations of the PGM la polymorphism (phosphoglucomutase; EC 2.7.5.1) by isoelectric focusing. Hum. Genet. 43(1):57.Google Scholar
  17. Levy, M., and Winternheimer, P. L. (1977). Allozyme linkage disequilibria among chromosome complexes in the permanent translocation heterozygote Oenothera biennis. Evolution 31(3):465.Google Scholar
  18. Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change Columbia University Press, New York.Google Scholar
  19. Lucarelli, P., Fano, E. A., and Vitagliano, G. T. (1975). Existence of a phosphoglucomutase enzyme polymorphism in Asellus aquaticus (L.) (Crustacea Isopoda). Rendiconti 58(4):647.Google Scholar
  20. Maerks, H. H. (1930). Sexualbiologishe Studien an Asellus aquaticus (L.). Zool. Jahr. Allgem. Zool. 48399.Google Scholar
  21. Manning, J. T. (1975). Male discrimination and investment in Asellus aquaticus (L.) and A. meridianus Racovitza (Crustacea Isopoda). Behavior 60(1–2):1.Google Scholar
  22. Prakash, S., and Lewontin, R. C. (1968). A molecular approach to the study of genetic heterozygosity. V. Further direct evidence of co-adaptation in gene arrangements of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 59398.Google Scholar
  23. Prakash, S., and Lewontin, R. C. (1971). A molecular approach to the study of genetic heterozygosity. V. Further direct evidence of co-adaptation in inversions of Drosophila. Genetics 69405.Google Scholar
  24. Selander, R. K., Yang, S. V., Lewontin, R. C., and Johnson, W. E. (1970). Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic “relic.” Evolution 24402.Google Scholar
  25. Singh, R. S., Hubby, J. L., and Throckmorton, L. H. (1975). The study of genetic variation by electrophoresis and heat denaturation techniques at the octanol dehydrogenase locus in members of the Drosophila virilis group. Genetics 80637.Google Scholar
  26. Spencer, N., Hopkinson, D. A., and Harris, H. (1964). Phosphoglucomutase polymorphism in man. Nature 204742.Google Scholar
  27. Sutton, J. G., and Burgess, R. (1987). Genetic evidence for four common alleles at the phosphoglucomutase-1 locus (PGM) detectable by isoelectric focusing. Vox Sang. 34(2):97.Google Scholar
  28. Verspoor, E. (1980). An Ecological Study of Two Enzyme Polymorphisms in Asellus aquaticus (L.) Isopoda, Unpublished Ph.D. thesis, University of Nottingham, Nottingham, England.Google Scholar
  29. Voelker, R. A., Langley, C. H., Leigh Brown, A. J., Ohnishi, S., Dickenson, B., Montgomery, E., and Smith, S. C. (1980). Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina, USA, population. Proc. Natl. Acad. Sci. USA 77(2):1091.Google Scholar
  30. Watt, W. B. (1977). Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of colias butterflies: Biochemical and population aspects. Genetics 87177.Google Scholar
  31. Wilkens, N. P. (1975). Phosphoglucose isomerase in marine molluscs. In Markert, C. L. (ed.), Isozymes IV—Genetics and Evolution Academic Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Eric Verspoor
    • 1
  1. 1.Department of GeneticsUniversity ParkEngland

Personalised recommendations