Skip to main content
Log in

An estimate of the amount of genetic variation in the common mussel Mytilus edulis

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Allozyme variation in a population of the common mussel Mytilus edulis in Mumbles, South Wales, has been studied by starch gel electrophoresis. On the basis of data obtained for 34 loci, we estimate the proportion of loci polymorphic to be 30%. Using only the 29 loci for which individual genotypes can be accurately typed, the average heterozygosity is estimated to be 9.5±3.6%. The calculated expected average heterozygosity based on Hardy-Weinberg expectations is identical with the observed value. Allele frequency data at six polymorphic loci are given for several other British populations. There is no significant geographic heterogeneity. The results are discussed in relation to genetic adaptive strategies and are shown to be inconsistent with the predictions of the neutral hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M., and Beardmore, J. A. (1976). Genetic evidence that the “Padstow Mussell” is Mytilus galloprovincialis. Mar. Biol. 35139.

    Google Scholar 

  • Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A., and Perez-Salas, S. (1972). Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70113.

    Google Scholar 

  • Ayala, F. J., Valentine, J. W., Hedgecock, D., and Barr, L. G. (1975). Deep-sea asteroids: High genetic variability in a stable environment. Evolution 29203.

    Google Scholar 

  • Balagot, B. P. (1971). Microgeographic variation at two biochemical loci in the Blue Mussel, Mytilus edulis. M.A. thesis, State University of New York, Stony Brook.

    Google Scholar 

  • Bayne, B. L. (1976). In Bayne, B. (ed.), Marine Mussels, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bayne, B. L., Widdows, J., and Thompson, R. J. (1976). Physiological integration. In Bayne, B. (ed.), Marine Mussels, Cambridge University Press, Cambridge.

    Google Scholar 

  • Boyer, J. F. (1974). Clinal and size-dependent variation at the LAP locus in Mytilus edulis. Biol. Bull. (Woods Hole Mass.) 147535.

    Google Scholar 

  • Ewens, W. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 387.

    Google Scholar 

  • Hopkinson, D. A., Mestriner, M. A., Cortner, J., and Harris, H. (1973). Esterase D. A new human polymorphism. Ann. Hum. Genet. 37119.

    Google Scholar 

  • Johnson, A. G., and Utter, F. M. (1973). Electrophoretic variations of aspartate aminotransferase of the bay mussel Mytilus edulis (Linnaeus, 1758). Comp. Biochem. Physiol. 44B317.

    Google Scholar 

  • Johnson, A. G., and Utter, F. M. (1975). Population differences of aspartate aminotrans ferase and peptidase in the bay mussel Mytilus edulis. Anim. Blood Groups Biochem. Genet. 671.

    Google Scholar 

  • Kimura, M., and Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics 49725.

    Google Scholar 

  • Kimura, M., and Ohta, T. (1971). Protein polymorphism as a phase of molecular evolution. Nature (London) 229467.

    Google Scholar 

  • King, J. L., and Jukes, T. H. (1969). Non-Darwinian evolution: Random fixation for selectively neutral alleles. Science 164788.

    Google Scholar 

  • Koehn, R. K. (1975). Migration and population structure in the pelagically dispersing marine invertebrate Mytilus edulis. In Proceedings of the Third International Conference on Isozymes.

  • Koehn, R. K., and Mitton, J. B. (1972). Population genetics of marine pelecypods. I. Ecological heterogeneity and evolutionary strategy at an enzyme locus. Am. Nat. 10647.

    Google Scholar 

  • Koehn, R. K., Turano, F. J., and Mitton, J. B. (1973). Population genetics of marine pelecypods. II. Genetic differences in microhabitats of Modiolus demissus. Evolution 27100.

    Google Scholar 

  • Koehn, R. K., Milkman, R., and Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 302.

    Google Scholar 

  • Levins, R. (1968). Evolution in Changing Environments, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Levinton, J. (1973). Genetic variation in a gradient of environmental variability: Marine bivalvia (Mollusca). Science 18075.

    Google Scholar 

  • Lewis, W. H. P., and Harris, H. (1967). Human red cell peptidases. Nature (London) 215351.

    Google Scholar 

  • Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Milkman, R., and Beaty, L. D. (1970). Large scale electrophoretic studies of allelic variation in Mytilus edulis. Biol. Bull.) 139430.

    Google Scholar 

  • Mitton, J. B., Koehn, R. K., and Prout, T. (1973). Population genetics of marine pelecypods. III. Epistasis between functionally related isoenzymes of Mytilus edulis. Genetics 73487.

    Google Scholar 

  • Murdock, E. A., Ferguson, A., and Seed, R. (1975). Geographical variation in leucine aminopeptidase in Mytilus edulis L. from the Irish coasts. J. exp. Mar. Biol. Ecol. 1933.

    Google Scholar 

  • Nass, C. A. G. (1959). The x2 test for small expectations in contingency tables, with special reference to accidents and absenteeism. Biometrika 46365.

    Google Scholar 

  • Ohta, T. (1974). Mutational pressure as the main cause of molecular evolution and polymorphism. Nature (London) 252351.

    Google Scholar 

  • Ohta, T., and Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22201.

    Google Scholar 

  • Powell, J. R. (1975). Protein variation in natural populations of animals. Evol. Biol. 879.

    Google Scholar 

  • Selander, R. K., and Kaufman, D. W. (1973). Genic variability and strategies of adaptation in animals. Proc. Natl. Acad. Sci. 701875.

    Google Scholar 

  • Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem. Genet. 4297.

    Google Scholar 

  • Skibinski, D. O. F., Ahmad, M., and Beardmore, J. A. (1977). Genetic evidence for naturally occurring hybrids between Mytilus edulis and Mytilus galloprovincialis. Evolution. In press.

  • Tracey, M. L., Bellet, N. F., and Gravem, C. D. (1975). Excess allozyme homozygosity and breeding population structure in the mussel Mytilus californianus. Mar. Biol. 32303.

    Google Scholar 

  • Valentine, J. W. (1976). Genetic strategies of adaptation. In Ayala, F. J. (ed.), Molecular Evolution, Sinauer Associates Sunderland, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Grant No. GR3/2452 from the Natural Environment Research Council and Grant No. 101-74-7 ENV. U.K. from the EEC to J. A. Beardmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M., Skibinski, D.O.F. & Beardmore, J.A. An estimate of the amount of genetic variation in the common mussel Mytilus edulis . Biochem Genet 15, 833–846 (1977). https://doi.org/10.1007/BF00483980

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00483980

Key words

Navigation