Skip to main content
Log in

Urea and thiourea transport in Aspergillus nidulans

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Wild-type Aspergillus nidulans has an active transport system specific for urea which concentrates urea at least 50-fold relative to the extracellular concentration. It is substrate concentration dependent, with an apparent K m of 3×10−5 m for urea. Competition studies and the properties of mutants indicate that thiourea is taken up by the same system as urea. Thiourea is toxic at 5mm to wild-type cells of Aspergillus nidulans. Mutants, designated ureA1 to ureA16, resistant to thiourea have been isolated, and transport assays and growth tests show that they are specifically impaired in urea transport. The mutant ureA1 has a higher K m value than the wild type for thiourea uptake. The ureA locus has been assigned to linkage group VIII. ureA1 is recessive for thiourea resistance while semidominant for the low uptake characteristic. The urea uptake system is under nitrogen regulation, with l-glutamine as the probable effector. The mutants, meaA8 and gdhA1, which are insensitive to ammonium control of many nitrogen-regulated metabolic systems, are also insensitive to ammonium control of urea uptake, but both are sensitive to l-glutamine regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelberg, E. A., Mandel, M., and Chen, G. C. C. (1965). Optimum conditions for mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli. Biochim. Biophys. Acta 18788.

    Google Scholar 

  • Arst, H. N., and Cove, D. J. (1969). Methylammonium resistance in Aspergillus nidulans. J. Bacteriol. 981284.

    Google Scholar 

  • Arst, H. N., and Page, M. M. (1973). Mutants of Aspergillus nidulans altered in the transport of methylammonium and ammonium. Mol. Gen. Genet. 121239.

    Google Scholar 

  • Cohen, B. L. (1972). Ammonium repression of extracellular protease in Aspergillus nidulans. J. Gen. Microbiol. 71293.

    Google Scholar 

  • Cooper, T. G., and Sumrada, R. (1975). Urea transport in Saccharomyces cerevisiae. J. Bacteriol. 121(2):571.

    Google Scholar 

  • Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. Biophys. Acta 11351.

    Google Scholar 

  • Cybis, J., and Weglenski, P. (1972). Arginase induction in Aspergillus nidulans. Eur. J. Biochem. 30262.

    Google Scholar 

  • Dunn-Coleman, N. S., and Garett, R. H. (1980). The role of glutamine synthetase and glutamine metabolism in nitrogen metabolite repression, a regulatory phenomenon in the lower eucaryote Neurospora. Mol. Gen. Genet. 17925.

    Google Scholar 

  • Kinghorn, J. R., and Pateman, J. A. (1975a). The structural gene for NADP L-glutamate dehydrogenase in Aspergillus nidulans. J. Gen. Microbiol. 86294.

    Google Scholar 

  • Kinghorn, J. R., and Pateman, J. A. (1975b). Studies of partially repressed mutants at the tamA and areA loci in Aspergillus nidulans. Mol. Gen. Genet. 140137.

    Google Scholar 

  • Kinghorn, J. R., and Pateman, J. A. (1975c). Mutations which affect amino-acid transport in Aspergillus nidulans. J. Gen. Microbiol. 86174.

    Google Scholar 

  • Lineweaver, H., and Burk, D. (1934). The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56658.

    Google Scholar 

  • Mackay, E. M., and Pateman, J. A. (1982). The regulation of urease activity in Aspergillus nidulans. Biochem. Genet. 20763–776.

    Google Scholar 

  • McCully, K. S., and Forbes, E. (1965). Use of p-fluorophenylalanine with master strains of Aspergillus nidulans. Genet. Res. 6352.

    Google Scholar 

  • Neville, E. D. and Feller, D. D. (1965). An improved CO2 collection well for use in incubation studies. Analytical Biochemistry 11144–148.

    Google Scholar 

  • Olszanska, B. (1968). Studies on the mechanism of urea uptake by plant roots. Acta Soc. Botan. Polon. 37(1):39.

    Google Scholar 

  • Pateman, J. A., Kinghorn, J. R., Dunn, E., and Forbes, E. (1973). Ammonium regulation in Aspergillus nidulans. J. Bacteriol. 114943.

    Google Scholar 

  • Pateman, J. A., Dunn, E., Kinghorn, J. R., and Forbes, E. (1974a). Ammonium and methylammonium transport in wild-type and mutant cells of Aspergillus nidulans. Mol. Gen. Genet. 133225.

    Google Scholar 

  • Pateman, J. A., Kinghorn, J. R., and Dunn, E. (1974b). Regulatory aspects of L-glutamate transport in Aspergillus nidulans. J. Bacteriol. 119(2):534.

    Google Scholar 

  • Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D., and Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Adv. Genet. 5141.

    Google Scholar 

  • Scazzocchio, C., and Darlington, A. J. (1968). The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim. Biophys. Acta 166557.

    Google Scholar 

  • Segel, I. H., and Johnston, M. J. (1963). Synthesis and characterization of sodium cysteine-s-sulphate monohydrate. Anal. Biochem. 5330.

    Google Scholar 

  • Sinha, U. (1969). Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics 62495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly at the Department of Genetics, University of Glasgow, Glasgow, Scotland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pateman, J.A., Dunn, E. & Mackay, E.M. Urea and thiourea transport in Aspergillus nidulans . Biochem Genet 20, 777–790 (1982). https://doi.org/10.1007/BF00483973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00483973

Key words

Navigation