Advertisement

Biochemical Genetics

, Volume 21, Issue 9–10, pp 923–931 | Cite as

Haplodiploid gene expression in maize and its detection

  • C. Frova
  • M. Sari Gorla
  • E. Ottaviano
  • C. Pella
Article

Abstract

A method for the demonstration of the gametophytic origin of genetic variability in maize is described. For genes coding dimeric or multimeric enzymes, haploid expression can be demonstrated by means of translocations between A and B chromosomes (TB-A), which make it possible to obtain hyperploid pollen grains, partially diploid and heterozygous for electrophoretic mobility. Comparison of the electrophoretic pattern of this pollen type (three bands) and that of normal grains produced by a heterozygous F/S plant (two bands only) reveals haploid transcription of the monomeric forms. The procedure was tested on ADH-1 and used to demonstrate haploid expression for GOT-1. The data obtained suggest, moreover, that the reduction in male gamete transmission of duplications may be due to differences in pollen competitive ability rather than to processes affecting microspore maturation.

Key words

haploid gene expression male gametophyte B-A translocations isozyme pattern Zea mays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckett, J. B. (1978). B-A translocations in maize. J. Hered. 6927.Google Scholar
  2. Bianchi, A., Bellini, G., Contin, M., and Ottaviano E. (1961). Non disjunction in presence of interchanges involving B-type chromosomes in maize, and some phenotypical consequences of meaning in maize breeding. Z. Vererbungslehre 92213.Google Scholar
  3. Birchler, J. A. (1980). The cytogenetic localization of the alcohol dehydrogenase 1 locus in maize. Genetics 94687.Google Scholar
  4. Brewbaker, J. L. (1971). Pollen enzymes and isoenzymes. In Heslop-Harrison, J. (ed.), Pollen: Development and Physiology Butterworth, London, p. 115.Google Scholar
  5. Bryce, W. H., and Nelson, O. E. (1979). Starch-synthesizing enzymes in the endosperm and pollen of maize. Plant Physiol. 63312.Google Scholar
  6. Carlson, W. P. (1977). The cytogenetics of corn. In Sprague, G. F. (ed.), Corn and Corn Improvement Am. Soc. Agron., Madison, Wis.Google Scholar
  7. Davis, B. J. (1964). Ann. N.Y. Acad. Sci. 121404.Google Scholar
  8. Demerec, M. (1924). A case of pollen dimorphism in maize. Am. J. Bot. 11461.Google Scholar
  9. De Nettancourt, D. (1977). Incompatibility in Angiosperms Springer, Berlin.Google Scholar
  10. Freeling, M. (1976). Intragenic recombination in maize: Pollen analysis methods and the effects of parental Adh+ iso-alleles. Genetics 83701.Google Scholar
  11. Ghidoni, A. (1975). Competition between balanced and hyperploid spores in Zea mays L. In Mulcahy, D. L. (ed.), Gamete Competition in Plants and Animals North-Holland, Amsterdam, p. 135.Google Scholar
  12. Goodman, M. M., Stuber, C. W., Newton, K., and Wessinger, H. H. (1980). Linkage relationships of 19 enzyme loci in maize. Genetics 96697.Google Scholar
  13. Heslop-Harrison, J. (1980). The forgotten generation: Some thoughts on the genetics and physiology of angiosperm gametophytes. In Davies, D. R., and Hopwood, D. A. (ed.), The Plant Genome The John Innes Charity, Norwich, p. 1.Google Scholar
  14. Mascarenhas, J. P. (1975). The biochemistry of angiosperm pollen development. Bot. Rev. 41260.Google Scholar
  15. Moore, C. W., and Creech, R. G. (1972). Genetic fine structure analysis of amylose-extender locus in Zea mays L. Genetics 70611.Google Scholar
  16. Mulcahy, D. L. (1971). A correlation between gametophytic and sporophytic characteristics in Zea mays L. Science 1711155.Google Scholar
  17. Mulcahy, D. L. (1974). Correlation between speed of pollen tube growth and seedling weight in Zea mays L. Nature 249491.Google Scholar
  18. Mulcahy, D. L. (1979). The rise of the angiosperms: A genecological factor. Science 20620.Google Scholar
  19. Mulcahy, D. L., Mulcahy, G. B., and Ottaviano, E. (1975). Sporophytic expression of gametophytic competition in Petunia hybrida. In Mulcahy, D. L. (ed.), Gamete Competition in Plants and Animals North-Holland, Amsterdam, p. 227.Google Scholar
  20. Ottaviano, E., and Sari Gorla, M. (1978). Genetic variability of male gametophyte in maize. Pollen genotype and pollen-style interaction. Monogr. Genet. Agr. 489.Google Scholar
  21. Ottaviano, E., Sari Gorla, M., and Mulcahy, D. L. (1980). Pollen tube growth rate in Zea mays L.: Implications for genetic improvement of crops. Science 210437.Google Scholar
  22. Ottaviano, E., Sari Gorla, M., and Pè, E. (1982). Male gametophytic selection in maize. Theor. Appl. Genet. 63249.Google Scholar
  23. Pfahler, P. L. (1975). Factors affecting male transmission in maize (Zea mays L.). In Mulcahy, D. L. (ed.), Gamete Competition in Plants and Animals North-Holland, Amsterdam, p. 115.Google Scholar
  24. Robertson, D. S. (1967). Crossing-over and chromosomal segregation involving the Ba element of the A-B translocation B-9b in maize. Genetics 55433.Google Scholar
  25. Roman, H. (1947). Mitotic non-disjunction in the case of interchanges involving the B-type chromosomes in maize. Genetics 32391.Google Scholar
  26. Scandalios, J. G. (1969). Genetic control of multiple molecular forms of enzymes in plants. A review. Biochem. Genet. 337.Google Scholar
  27. Scandalios, J. G., Sorenson, J. C., and Ott, L. A. (1975). Genetic control and intracellular localization of glutamate oxalacetic transaminase in maize. Biochem. Genet. 13759.Google Scholar
  28. Schwartz, D. (1971). Genetic control of alcohol dehydrogenase; A competition model of gene action. Genetics 6744.Google Scholar
  29. Tanksley, S. D., Zamir, D., and Rick, C. M. (1981). Evidence for extensive overlap of sporophytic and gametophytic gene expression of Licopersicon esculentum. Science 213453.Google Scholar
  30. Ter Avanesian, D. V. (1978). The effect of varying the number of pollen grains used in fertilization. Theor. Appl. Genet. 5277.Google Scholar
  31. Weeden, N. F., and Gottlieb, L. D. (1979). Distinguishing allozymes and isozymes of phosphoglucoisomerases by electrophoretic comparisons of pollen and somatic tissues. Biochem. Genet. 17287.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • C. Frova
    • 1
  • M. Sari Gorla
    • 1
  • E. Ottaviano
    • 1
  • C. Pella
    • 1
  1. 1.Istituto di GeneticaUniversità di MilanoMilanoItaly

Personalised recommendations